Home
Class 10
MATHS
The value of ("cosec" theta -cot theta)^...

The value of `("cosec" theta -cot theta)^(2)` is

A

`(1+cos theta)/(1-cos theta)`

B

`(1+sin theta)/(1-sin theta)`

C

`(1-cos theta)/(1+cos theta)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \((\csc \theta - \cot \theta)^2\), we can follow these steps: ### Step 1: Rewrite \(\csc \theta\) and \(\cot \theta\) We know that: \[ \csc \theta = \frac{1}{\sin \theta} \quad \text{and} \quad \cot \theta = \frac{\cos \theta}{\sin \theta} \] So, we can rewrite the expression: \[ \csc \theta - \cot \theta = \frac{1}{\sin \theta} - \frac{\cos \theta}{\sin \theta} \] ### Step 2: Combine the fractions Now, we can combine the fractions over a common denominator: \[ \csc \theta - \cot \theta = \frac{1 - \cos \theta}{\sin \theta} \] ### Step 3: Square the expression Next, we need to square the entire expression: \[ (\csc \theta - \cot \theta)^2 = \left(\frac{1 - \cos \theta}{\sin \theta}\right)^2 = \frac{(1 - \cos \theta)^2}{\sin^2 \theta} \] ### Step 4: Use the Pythagorean identity We know from the Pythagorean identity that: \[ \sin^2 \theta = 1 - \cos^2 \theta \] Thus, we can rewrite \(\sin^2 \theta\) in the denominator: \[ (\csc \theta - \cot \theta)^2 = \frac{(1 - \cos \theta)^2}{1 - \cos^2 \theta} \] ### Step 5: Factor the denominator The denominator can be factored as: \[ 1 - \cos^2 \theta = (1 - \cos \theta)(1 + \cos \theta) \] So, we have: \[ (\csc \theta - \cot \theta)^2 = \frac{(1 - \cos \theta)^2}{(1 - \cos \theta)(1 + \cos \theta)} \] ### Step 6: Simplify the expression Now, we can cancel one \((1 - \cos \theta)\) from the numerator and the denominator: \[ (\csc \theta - \cot \theta)^2 = \frac{1 - \cos \theta}{1 + \cos \theta} \] ### Final Result Thus, the value of \((\csc \theta - \cot \theta)^2\) is: \[ \frac{1 - \cos \theta}{1 + \cos \theta} \] ---
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO TRIGONOMETRY AND TRIGONOMETRIC IDENTITIES

    OSWAL PUBLICATION|Exercise ASSERTION AND REASON BASED MCQs|7 Videos
  • INTRODUCTION TO TRIGONOMETRY AND TRIGONOMETRIC IDENTITIES

    OSWAL PUBLICATION|Exercise CASE BASED MCQs I|5 Videos
  • INTRODUCTION TO TRIGONOMETRY

    OSWAL PUBLICATION|Exercise Self - Assessment |15 Videos
  • LINES (IN TWO - DIMENSIONS)

    OSWAL PUBLICATION|Exercise BOARD CORNER (LONG ANSWER TYPE QUESTION)|2 Videos

Similar Questions

Explore conceptually related problems

If "cosec"theta - cot theta = 1/3 , then the value of "cosec"theta + cot theta is:

If cosec theta =x + 1/(4x) then the value of cosec theta + cot theta is

The value of sqrt((cosec theta-cot theta)/(cosec theta+cot theta)) div (sin theta)/(1+cos theta) is equal to: sqrt((cosec theta-cot theta)/(cosec theta+cot theta)) div (sin theta)/(1+cos theta) का मान निम्नलिखित में से किसक बराबर है?

If cos theta=(4)/(5) , then value of (cosec theta)/(1+cot theta) is

If "cosec"theta=x+(1)/(4x) , then find the value of "cosec"theta+cot theta .

If (sectheta - tantheta)/(sectheta + tantheta) = 3/5 ,then the value of ("cosec"theta + cot theta)/("cosec"theta - cottheta) is:

For 0 prec theta prec 90 , if 2 cos^2 theta=3 sin theta , then the value of (cosec^2 theta-cot^2 theta+cos^2 theta) is equal to : 0 prec theta prec 90 के लिए , यदि 2 cos^2 theta=3 sin theta है, तो (cosec^2 theta-cot^2 theta+cos^2 theta) किसके बराबर होगा?

Prove that: ("cosec" theta + cot theta)/("cosec" theta - cot theta) = ("cosec" theta + cot theta )^(2) = 1 + 2 cot^(2) theta + 2 "cosec" theta cot theta .