Home
Class 10
MATHS
Assertion (A) : ((1+cos theta)/(sintheta...

Assertion (A) : `((1+cos theta)/(sintheta))^(2)=(1+cos theta)/(1-cos theta)`
Reason (R ) : `sin^(2)theta = cos^(2) theta-1 `

A

Both A and R are true and R is the correct explanation of A.

B

Both A and R are true and R is NOT the correct explanation of A.

C

A is true but R is false

D

A is false but R is true

Text Solution

AI Generated Solution

The correct Answer is:
To solve the assertion and reason problem, we need to analyze the given statements step by step. ### Step 1: Analyze the Assertion The assertion states: \[ \left(\frac{1 + \cos \theta}{\sin \theta}\right)^2 = \frac{1 + \cos \theta}{1 - \cos \theta} \] **Left Hand Side (LHS)**: \[ \left(\frac{1 + \cos \theta}{\sin \theta}\right)^2 = \frac{(1 + \cos \theta)^2}{\sin^2 \theta} \] **Right Hand Side (RHS)**: \[ \frac{1 + \cos \theta}{1 - \cos \theta} \] ### Step 2: Simplify the LHS Using the identity \(\sin^2 \theta + \cos^2 \theta = 1\), we can express \(\sin^2 \theta\) as: \[ \sin^2 \theta = 1 - \cos^2 \theta \] Substituting this into the LHS: \[ \frac{(1 + \cos \theta)^2}{1 - \cos^2 \theta} \] ### Step 3: Factor the Denominator The denominator \(1 - \cos^2 \theta\) can be factored as: \[ 1 - \cos^2 \theta = (1 + \cos \theta)(1 - \cos \theta) \] ### Step 4: Substitute Back into LHS Now substituting this back into the LHS gives: \[ \frac{(1 + \cos \theta)^2}{(1 + \cos \theta)(1 - \cos \theta)} \] ### Step 5: Cancel Common Terms Now, we can cancel \(1 + \cos \theta\) from the numerator and denominator (assuming \(1 + \cos \theta \neq 0\)): \[ \frac{1 + \cos \theta}{1 - \cos \theta} \] ### Conclusion for Assertion Thus, we have shown that: \[ \left(\frac{1 + \cos \theta}{\sin \theta}\right)^2 = \frac{1 + \cos \theta}{1 - \cos \theta} \] This means the assertion (A) is **true**. ### Step 6: Analyze the Reason The reason states: \[ \sin^2 \theta = \cos^2 \theta - 1 \] This is incorrect because the correct identity is: \[ \sin^2 \theta = 1 - \cos^2 \theta \] Thus, the reason (R) is **false**. ### Final Answer - Assertion (A) is **true**. - Reason (R) is **false**.
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO TRIGONOMETRY AND TRIGONOMETRIC IDENTITIES

    OSWAL PUBLICATION|Exercise CASE BASED MCQs I|5 Videos
  • INTRODUCTION TO TRIGONOMETRY AND TRIGONOMETRIC IDENTITIES

    OSWAL PUBLICATION|Exercise CASE BASED MCQs II|5 Videos
  • INTRODUCTION TO TRIGONOMETRY AND TRIGONOMETRIC IDENTITIES

    OSWAL PUBLICATION|Exercise BOARD CORNER (Long Solution Type Questions)|6 Videos
  • INTRODUCTION TO TRIGONOMETRY

    OSWAL PUBLICATION|Exercise Self - Assessment |15 Videos
  • LINES (IN TWO - DIMENSIONS)

    OSWAL PUBLICATION|Exercise BOARD CORNER (LONG ANSWER TYPE QUESTION)|2 Videos

Similar Questions

Explore conceptually related problems

(cos theta)/(1+sin theta)+(1+sin theta)/(cos theta)=2sec theta

cos theta/(1+sin theta)=(1-sin theta)/cos theta

Prove :(cos theta)/(1+sin theta)+(cos theta)/(1-sin theta)=2sec theta

(sin theta)/(1-cos theta)=(1+cos theta)/(sin theta)

(cos theta)/(1-sin theta)=(1+cos theta+sin theta)/(1+cos theta-sin theta)

Prove that (1-sin theta+cos theta)^(2)=2(1+cos theta)(1-sin theta)

(1-sin theta)/(cos theta)-(cos theta)/(1+sin theta)=2tan theta

(sintheta+sin2theta)/(1+costheta+cos2theta) =

Prove: ((1+sin theta-cos theta)/(1+sin theta+cos theta))^(2)=(1-cos theta)/(1+cos theta)

((sin theta+cos theta)^(2)-1)/(sin theta*cos theta)