Home
Class 10
MATHS
Find the value of (sin^2 33^@ + sin^2 5...

Find the value of `(sin^2 33^@ + sin^2 57^@)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \sin^2 33^\circ + \sin^2 57^\circ \), we can use the trigonometric identity that relates sine and cosine. ### Step 1: Rewrite \( \sin^2 57^\circ \) Using the identity \( \sin(90^\circ - \theta) = \cos(\theta) \), we can express \( \sin^2 57^\circ \) in terms of cosine: \[ \sin^2 57^\circ = \sin^2(90^\circ - 33^\circ) = \cos^2 33^\circ \] ### Step 2: Substitute into the equation Now we can substitute this back into our original expression: \[ \sin^2 33^\circ + \sin^2 57^\circ = \sin^2 33^\circ + \cos^2 33^\circ \] ### Step 3: Use the Pythagorean identity We know from the Pythagorean identity that: \[ \sin^2 \theta + \cos^2 \theta = 1 \] Applying this identity for \( \theta = 33^\circ \): \[ \sin^2 33^\circ + \cos^2 33^\circ = 1 \] ### Final Answer Thus, the value of \( \sin^2 33^\circ + \sin^2 57^\circ \) is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO TRIGONOMETRY AND TRIGONOMETRIC IDENTITIES

    OSWAL PUBLICATION|Exercise BOARD CORNER (Short Answer Type Questions)|6 Videos
  • INTRODUCTION TO TRIGONOMETRY AND TRIGONOMETRIC IDENTITIES

    OSWAL PUBLICATION|Exercise BOARD CORNER (Long Solution Type Questions)|6 Videos
  • INTRODUCTION TO TRIGONOMETRY AND TRIGONOMETRIC IDENTITIES

    OSWAL PUBLICATION|Exercise NCERT EXEMPLAR (Exercise - 8.4)|8 Videos
  • INTRODUCTION TO TRIGONOMETRY

    OSWAL PUBLICATION|Exercise Self - Assessment |15 Videos
  • LINES (IN TWO - DIMENSIONS)

    OSWAL PUBLICATION|Exercise BOARD CORNER (LONG ANSWER TYPE QUESTION)|2 Videos

Similar Questions

Explore conceptually related problems

Find the value of sin^2 35+sin^2 55 . sin^2 35+sin^2 55 का मान ज्ञात करें ।

Find the value of sin^(2)5^(@)+ sin^(2)10^(@)+ sin^(2)15^(@)+* * * +sin^(2)90^(@) .

Find the value of (1-2sin^(2)30^(@)) .

sin^2 33^@+cos^2 57^@=

Find the value of sin^(2)1^(@)+sin^(2)2^(@)+sin^(2)3^(@)+ ----+sin^(2)87^(@)+sin^(2)88^(@)+sin^(2)89^(@)+sin^(2)90^(@) .

Find the value of (1)/(2sin10)-2sin70

Find the value of 2sin 30^@ +cos 0^@ +3 sin 90^@ .

The value of sin^2 1^@ + sin^2 3^@ + sin^2 5^@ +…+ sin^2 87^@ + sin^2 89^@ is

If A=29^@ , find the value of sin^4 A+ cos^4 A + 2 sin^2 A cos^2 A