Home
Class 10
MATHS
If 4 tan theta = 3, evaluate ((4 sin the...

If `4 tan theta = 3,` evaluate `((4 sin theta -2 cos theta+3)/(4 sin theta + 2cos theta-5))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will follow these steps: ### Step 1: Find the value of \(\tan \theta\) Given that \(4 \tan \theta = 3\), we can isolate \(\tan \theta\): \[ \tan \theta = \frac{3}{4} \] ### Step 2: Set up a right triangle In a right triangle, \(\tan \theta\) is defined as the ratio of the opposite side (perpendicular) to the adjacent side (base). Therefore, we can denote: - Opposite side = 3 (perpendicular) - Adjacent side = 4 (base) ### Step 3: Calculate the hypotenuse using the Pythagorean theorem Using the Pythagorean theorem: \[ h^2 = p^2 + b^2 \] Substituting the values we have: \[ h^2 = 3^2 + 4^2 = 9 + 16 = 25 \] Thus, the hypotenuse \(h\) is: \[ h = \sqrt{25} = 5 \] ### Step 4: Find \(\sin \theta\) and \(\cos \theta\) Now we can find \(\sin \theta\) and \(\cos \theta\): \[ \sin \theta = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{3}{5} \] \[ \cos \theta = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{4}{5} \] ### Step 5: Substitute \(\sin \theta\) and \(\cos \theta\) into the expression We need to evaluate: \[ \frac{4 \sin \theta - 2 \cos \theta + 3}{4 \sin \theta + 2 \cos \theta - 5} \] Substituting the values of \(\sin \theta\) and \(\cos \theta\): \[ = \frac{4 \left(\frac{3}{5}\right) - 2 \left(\frac{4}{5}\right) + 3}{4 \left(\frac{3}{5}\right) + 2 \left(\frac{4}{5}\right) - 5} \] ### Step 6: Simplify the numerator Calculating the numerator: \[ = \frac{\frac{12}{5} - \frac{8}{5} + 3}{\frac{12}{5} + \frac{8}{5} - 5} \] Combining the terms: \[ = \frac{\frac{12 - 8 + 15}{5}}{\frac{12 + 8 - 25}{5}} = \frac{\frac{19}{5}}{\frac{-5}{5}} = \frac{19}{-5} = -\frac{19}{5} \] ### Step 7: Final answer Thus, the value of the expression is: \[ -\frac{19}{5} \] ---
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO TRIGONOMETRY AND TRIGONOMETRIC IDENTITIES

    OSWAL PUBLICATION|Exercise BOARD CORNER (Long Solution Type Questions)|6 Videos
  • INTRODUCTION TO TRIGONOMETRY AND TRIGONOMETRIC IDENTITIES

    OSWAL PUBLICATION|Exercise BOARD CORNER (Very Short Answer Type Questions)|5 Videos
  • INTRODUCTION TO TRIGONOMETRY

    OSWAL PUBLICATION|Exercise Self - Assessment |15 Videos
  • LINES (IN TWO - DIMENSIONS)

    OSWAL PUBLICATION|Exercise BOARD CORNER (LONG ANSWER TYPE QUESTION)|2 Videos

Similar Questions

Explore conceptually related problems

If 4 tan theta =3 , evaluate ((4 sin theta - 2cos theta +3)/(4 sin theta +2 cos theta -5))

If 4 tan theta = 3 , evaluate (4 sin theta - cos theta +1)/(4 sin theta + cos theta -1)

If 3 tan theta =4 , "evaluate "(3sin theta + 2 cos theta)/(3 sin theta - 2 cos theta ).

If 4tan theta=3, the value of ((4sin theta-2cos theta)/(4sin theta+2cos theta)) is:

If 4tan theta=3, evaluate (4sin theta-cos theta+1)/(sin theta+cos theta-1)

If 4tan theta=3 evaluate (4sin theta-cos theta+1)/(4sin theta+cos theta-1)

If 5 tan theta =4, find the value of (5 sin theta - 3 cos theta)/(5 sin theta +2 cos theta)

If tan theta = 4/3 ,then the value of (3 sin theta + 2cos theta)/(3 sin theta - 2 cos theta) is

If 5 tan theta =4 then find the value of (5 sin theta - cos theta)/(sin theta + 3 cos theta)

If 5 cot theta = 3 ," find the value of "((5sin theta - 3 cos theta )/(4 sin theta + 3 cos theta)).