Home
Class 10
MATHS
Prove that: (sin theta - 2 sin^(3) thet...

Prove that: ` (sin theta - 2 sin^(3) theta) = (2cos^(3) theta - cos theta) tan theta . `

Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO TRIGONOMETRY AND TRIGONOMETRIC IDENTITIES

    OSWAL PUBLICATION|Exercise BOARD CORNER (Short Answer Type Questions)|6 Videos
  • INTRODUCTION TO TRIGONOMETRY

    OSWAL PUBLICATION|Exercise Self - Assessment |15 Videos
  • LINES (IN TWO - DIMENSIONS)

    OSWAL PUBLICATION|Exercise BOARD CORNER (LONG ANSWER TYPE QUESTION)|2 Videos

Similar Questions

Explore conceptually related problems

Prove that (sin theta - 2 sin^(3) theta)/(2 cos^(3) theta - cos theta) = tan theta

(sin theta-2sin^(3)theta)/(2cos^(3)theta-cos theta)=tan theta

(sin5 theta-2sin3 theta + sin theta) / (cos5 theta-cos theta) = tan theta

Prove that :(sin5 theta-2sin3 theta+sin theta)/(cos5 theta-cos theta)=tan theta

Prove that: sin^(6) theta + cos^(6) theta =1 - 3 sin^(2) theta cos^(2) theta

(cos theta-sin theta) / (cos theta + sin theta) = sec2 theta-tan2 theta

Prove that :(sin5 theta+sin3 theta)/(cos5 theta+cos3 theta)=tan4 theta

Prove each of the following identities : (cos^(3) theta + sin^(3) theta)/(cos theta + sin theta ) + (cos^(3) theta - sin^(3) theta)/(cos theta - sin theta ) = 2

Prove that : tan theta - cot theta = (2 sin^(2) theta - 1)/(sin theta cos theta)