Home
Class 10
MATHS
If a and beta are the zeroes of the poly...

If a and `beta` are the zeroes of the polynomial `x^(2) + 2x + 1`, then `(1)/(alpha)+(1)/(beta)` is equal to :

A

`-2`

B

2

C

0

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(\frac{1}{\alpha} + \frac{1}{\beta}\), where \(\alpha\) and \(\beta\) are the zeroes of the polynomial \(x^2 + 2x + 1\). ### Step-by-Step Solution: 1. **Identify the Polynomial**: The given polynomial is \(x^2 + 2x + 1\). 2. **Find the Zeroes**: - The zeroes of a quadratic polynomial \(ax^2 + bx + c\) can be found using the relationships: - Sum of the zeroes (\(\alpha + \beta\)) = \(-\frac{b}{a}\) - Product of the zeroes (\(\alpha \cdot \beta\)) = \(\frac{c}{a}\) - Here, \(a = 1\), \(b = 2\), and \(c = 1\). 3. **Calculate the Sum of the Zeroes**: \[ \alpha + \beta = -\frac{b}{a} = -\frac{2}{1} = -2 \] 4. **Calculate the Product of the Zeroes**: \[ \alpha \cdot \beta = \frac{c}{a} = \frac{1}{1} = 1 \] 5. **Calculate \(\frac{1}{\alpha} + \frac{1}{\beta}\)**: - We can rewrite \(\frac{1}{\alpha} + \frac{1}{\beta}\) as: \[ \frac{1}{\alpha} + \frac{1}{\beta} = \frac{\beta + \alpha}{\alpha \cdot \beta} \] - Substitute the values we found: \[ \frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha \cdot \beta} = \frac{-2}{1} = -2 \] 6. **Final Answer**: \[ \frac{1}{\alpha} + \frac{1}{\beta} = -2 \]
Promotional Banner

Topper's Solved these Questions

  • C.B.S.E 2020 CLASS -X (DELHI)

    OSWAL PUBLICATION|Exercise DELHI SET -III ( SECTION- B) |2 Videos
  • C.B.S.E 2020 CLASS -X (DELHI)

    OSWAL PUBLICATION|Exercise DELHI SET -III ( SECTION- C ) |4 Videos
  • C.B.S.E 2020 CLASS -X (DELHI)

    OSWAL PUBLICATION|Exercise DELHI SET -II ( SECTION- D ) |1 Videos
  • ARITHMETIC PROGRESSIONS

    OSWAL PUBLICATION|Exercise CASE - BASED MCQs |15 Videos
  • C.B.S.E 2020 CLASS -X (OUTSIDE DELHI)

    OSWAL PUBLICATION|Exercise OUTSIDE DELHI SET -III ( SECTION- D ) |2 Videos

Similar Questions

Explore conceptually related problems

If alpha and beta are the zeroes of the polynomial x^(2)+x+1, then (1)/(alpha)+(1)/(beta) =

If alpha and beta are the zeroes of the polynomial 2x^(2) - 13x + 6 , then alpha +beta is equal to

Assertion : If alpha and Beta are the zeroes of the polynomial x^(2)+2x-15 then (1)/(alpha)+(1)/(beta) is (2)/(15) . Reason : If alpha and Beta are the zeroes of a quadratic polynomial ax^(2)+bx+c then alpha+beta=-(b)/(a) and alphabeta=(c)/(a)

If alpha, beta are the zeros of the polynomial x^(2) + 6x+2" then " (1/alpha+1/beta)=?

If alpha,beta are the zeroes of the polynomial x^(2)-p(x+1)-q , then (alpha+1)(beta+1)=

If alpha, beta are the zeros of the polynomial f(x) = x^2 – 3x + 2 , then find 1/alpha + 1/beta .

If alpha and beta be the zeros of the polynomial x^(2)+x+1 , then find the value of (1)/(alpha)+(1)/(beta) .

If alpha and beta are zeroes of the polynomial 3x^(2)-7x+1 then find the value of (1)/(alpha)+(1)/(beta)

If alpha and beta are the zeros of the polynomial p(x) = x^(2) - px + q , then find the value of (1)/(alpha)+(1)/(beta)