Home
Class 10
MATHS
Evaluate : (tan 23^(@)) xx ( tan 67^(@))...

Evaluate : `(tan 23^(@)) xx ( tan 67^(@)) `

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \((\tan 23^\circ) \times (\tan 67^\circ)\), we can use the trigonometric identity that relates tangent and cotangent. ### Step-by-Step Solution: 1. **Identify the relationship between angles**: We know that \(67^\circ\) can be expressed in terms of \(23^\circ\): \[ 67^\circ = 90^\circ - 23^\circ \] 2. **Use the co-function identity**: The co-function identity states that: \[ \tan(90^\circ - \theta) = \cot(\theta) \] Therefore, we can write: \[ \tan(67^\circ) = \cot(23^\circ) \] 3. **Substitute the identity into the expression**: Now we can substitute \(\tan(67^\circ)\) in the original expression: \[ (\tan 23^\circ) \times (\tan 67^\circ) = (\tan 23^\circ) \times (\cot 23^\circ) \] 4. **Use the relationship between tangent and cotangent**: We know that: \[ \cot(\theta) = \frac{1}{\tan(\theta)} \] Thus, we can write: \[ \tan 23^\circ \times \cot 23^\circ = \tan 23^\circ \times \frac{1}{\tan 23^\circ} \] 5. **Simplify the expression**: This simplifies to: \[ \tan 23^\circ \times \frac{1}{\tan 23^\circ} = 1 \] ### Final Answer: Therefore, the value of \((\tan 23^\circ) \times (\tan 67^\circ)\) is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • C.B.S.E 2020 CLASS -X (OUTSIDE DELHI)

    OSWAL PUBLICATION|Exercise OUTSIDE DELHI SET -I ( SECTION- B ) |7 Videos
  • C.B.S.E 2020 CLASS -X (OUTSIDE DELHI)

    OSWAL PUBLICATION|Exercise OUTSIDE DELHI SET -I ( SECTION- C ) |11 Videos
  • C.B.S.E 2020 CLASS -X (DELHI)

    OSWAL PUBLICATION|Exercise DELHI SET -III ( SECTION- D ) |1 Videos
  • CIRCLES

    OSWAL PUBLICATION|Exercise SELF ASSESSMENT|5 Videos

Similar Questions

Explore conceptually related problems

Evaluate : tan 35^(@) tan 60^(@) tan 30^(@) tan65 .

Evaluate : 2 sec 30^(@) xx tan 60^(@)

What is the value of (tan 9^(@) tan 23^(@) tan 60^(@) tan67^(@) tan 81^(@))/("cosec"^(2)72^(@)+cos^(2)15^(@)-tan^(2)18^(@)+cos^(2)75^(@))? (a) (1)/(2 sqrt(3)) (b) (sqrt(3))/(2) (c) (1)/(sqrt(3)) (d) 2 sqrt(3)

Evaluate : tan7^(@)tan23^(@)tan60^(@)tan67^(@)tan83^(@)+(cot54^(@))/(tan36^(@))+sin20^(@)sec70^(@)-2

Evaluate : tan^(-1)(tan ((6pi)/(7)))

Evaluate tan 40^@ xx tan 50^@

Find (1+tan2^(@))(1+tan43^(@)) .