Home
Class 10
MATHS
Prove that : (1 - tan^(2) theta)/(1 + ta...

Prove that : `(1 - tan^(2) theta)/(1 + tan^(2) theta) = cos^(2) theta - sin^(2) theta`

Text Solution

AI Generated Solution

The correct Answer is:
To prove the identity \[ \frac{1 - \tan^2 \theta}{1 + \tan^2 \theta} = \cos^2 \theta - \sin^2 \theta, \] we will start with the left-hand side (LHS) and manipulate it to show that it equals the right-hand side (RHS). ### Step 1: Rewrite \(\tan^2 \theta\) Recall that \(\tan \theta = \frac{\sin \theta}{\cos \theta}\). Therefore, we can express \(\tan^2 \theta\) as: \[ \tan^2 \theta = \frac{\sin^2 \theta}{\cos^2 \theta}. \] ### Step 2: Substitute \(\tan^2 \theta\) in LHS Substituting \(\tan^2 \theta\) into the LHS gives: \[ \frac{1 - \frac{\sin^2 \theta}{\cos^2 \theta}}{1 + \frac{\sin^2 \theta}{\cos^2 \theta}}. \] ### Step 3: Simplify the fractions To simplify the expression, we can multiply the numerator and the denominator by \(\cos^2 \theta\): \[ \frac{\cos^2 \theta - \sin^2 \theta}{\cos^2 \theta + \sin^2 \theta}. \] ### Step 4: Use the Pythagorean identity Using the Pythagorean identity \(\sin^2 \theta + \cos^2 \theta = 1\), we can simplify the denominator: \[ \cos^2 \theta + \sin^2 \theta = 1. \] Thus, the expression simplifies to: \[ \frac{\cos^2 \theta - \sin^2 \theta}{1} = \cos^2 \theta - \sin^2 \theta. \] ### Step 5: Conclusion We have shown that: \[ \frac{1 - \tan^2 \theta}{1 + \tan^2 \theta} = \cos^2 \theta - \sin^2 \theta, \] which is the right-hand side (RHS) of the original equation. Therefore, we conclude that: \[ \text{LHS} = \text{RHS}. \] Hence, the identity is proved.
Promotional Banner

Topper's Solved these Questions

  • C.B.S.E 2020 CLASS -X (OUTSIDE DELHI)

    OSWAL PUBLICATION|Exercise OUTSIDE DELHI SET -I ( SECTION- C ) |11 Videos
  • C.B.S.E 2020 CLASS -X (OUTSIDE DELHI)

    OSWAL PUBLICATION|Exercise OUTSIDE DELHI SET -I ( SECTION- D ) |9 Videos
  • C.B.S.E 2020 CLASS -X (OUTSIDE DELHI)

    OSWAL PUBLICATION|Exercise OUTSIDE DELHI SET -III ( SECTION- D ) |2 Videos
  • C.B.S.E 2020 CLASS -X (DELHI)

    OSWAL PUBLICATION|Exercise DELHI SET -III ( SECTION- D ) |1 Videos
  • CIRCLES

    OSWAL PUBLICATION|Exercise SELF ASSESSMENT|5 Videos

Similar Questions

Explore conceptually related problems

Prove that (1 - tan^(2) theta)/(1 + tan^(2) theta) = cos^(2) - sin^(2) theta

If 3cot theta=4 then show that (1-tan^(2)theta)/(1+tan^(2)theta)=(cos^(2)theta-sin^(2)theta)

Prove that (1+ tan^4 theta)/(1+ tan^2 theta) = sec ^2 theta-2 sin^2theta

Prove that : (tan^(3) theta)/(1+tan^(2)theta) +(cot^(3)theta)/(1+cot^(2)theta) = sec theta "cosec " theta - 2 sin theta cos theta .

Prove that : (tan^(2)theta)/(1+tan^(2)theta)+(cot^(2)theta)/(1+cot^(2)theta)=1

Prove that : sin^(2)theta+(1)/(1+tan^(2)theta)=1

Prove that: (sin theta - 2 sin^(3) theta) = (2cos^(3) theta - cos theta) tan theta .

Prove that : (i) 1+(cos^(2)theta)/(sin^(2)theta)-"cosec"^(2)theta=0 (ii) (1+tan^(2)theta)/("cosec"^(2)theta)=tan^(2)theta

Prove that (tan^(3)theta)/(1+tan^(2)theta)+(cot^(3)theta)/(1+cot^(2)theta)=sec theta cos ec theta-2sin theta cos theta