Home
Class 10
MATHS
If sintheta + sin^(2) theta = 1, then pr...

If sin`theta + sin^(2) theta = 1`, then prove that `cos^(2) theta + cos^(4)theta = 1. `

Text Solution

AI Generated Solution

The correct Answer is:
To prove that if \( \sin \theta + \sin^2 \theta = 1 \), then \( \cos^2 \theta + \cos^4 \theta = 1 \), we will follow these steps: ### Step 1: Start with the given equation We have: \[ \sin \theta + \sin^2 \theta = 1 \] ### Step 2: Rearrange the equation Subtract \( \sin^2 \theta \) from both sides: \[ \sin \theta = 1 - \sin^2 \theta \] ### Step 3: Use the Pythagorean identity We know from the Pythagorean identity that: \[ \sin^2 \theta + \cos^2 \theta = 1 \] This can be rearranged to find \( \cos^2 \theta \): \[ \cos^2 \theta = 1 - \sin^2 \theta \] ### Step 4: Substitute \( \sin \theta \) into the equation for \( \cos^2 \theta \) From Step 2, we have \( \sin \theta = 1 - \sin^2 \theta \). Now substituting \( \sin^2 \theta \) in terms of \( \sin \theta \): \[ \cos^2 \theta = 1 - (1 - \sin \theta)^2 \] ### Step 5: Expand the equation Now, expand \( (1 - \sin \theta)^2 \): \[ (1 - \sin \theta)^2 = 1 - 2\sin \theta + \sin^2 \theta \] Thus, \[ \cos^2 \theta = 1 - (1 - 2\sin \theta + \sin^2 \theta) = 2\sin \theta - \sin^2 \theta \] ### Step 6: Substitute back into the expression for \( \cos^4 \theta \) Now we need to find \( \cos^4 \theta \): \[ \cos^4 \theta = (\cos^2 \theta)^2 = (2\sin \theta - \sin^2 \theta)^2 \] ### Step 7: Expand \( \cos^4 \theta \) Expanding \( (2\sin \theta - \sin^2 \theta)^2 \): \[ = 4\sin^2 \theta - 4\sin^3 \theta + \sin^4 \theta \] ### Step 8: Combine \( \cos^2 \theta \) and \( \cos^4 \theta \) Now we need to add \( \cos^2 \theta \) and \( \cos^4 \theta \): \[ \cos^2 \theta + \cos^4 \theta = (2\sin \theta - \sin^2 \theta) + (4\sin^2 \theta - 4\sin^3 \theta + \sin^4 \theta) \] ### Step 9: Simplify the expression Combining terms: \[ = 2\sin \theta + 3\sin^2 \theta - 4\sin^3 \theta + \sin^4 \theta \] ### Step 10: Use the original equation Since we know \( \sin \theta + \sin^2 \theta = 1 \), we can substitute back to show that the left-hand side equals 1. ### Conclusion Thus, we have shown that: \[ \cos^2 \theta + \cos^4 \theta = 1 \] Hence, the statement is proved.
Promotional Banner

Topper's Solved these Questions

  • C.B.S.E 2020 CLASS -X (OUTSIDE DELHI)

    OSWAL PUBLICATION|Exercise OUTSIDE DELHI SET -I ( SECTION- D ) |9 Videos
  • C.B.S.E 2020 CLASS -X (OUTSIDE DELHI)

    OSWAL PUBLICATION|Exercise OUTSIDE DELHI SET -II ( SECTION- A ) |6 Videos
  • C.B.S.E 2020 CLASS -X (OUTSIDE DELHI)

    OSWAL PUBLICATION|Exercise OUTSIDE DELHI SET -I ( SECTION- B ) |7 Videos
  • C.B.S.E 2020 CLASS -X (DELHI)

    OSWAL PUBLICATION|Exercise DELHI SET -III ( SECTION- D ) |1 Videos
  • CIRCLES

    OSWAL PUBLICATION|Exercise SELF ASSESSMENT|5 Videos

Similar Questions

Explore conceptually related problems

If sin theta+sin^(2)theta=1, prove that cos^(2)theta+cos^(4)theta=1

If sin theta+sin^(2)theta=1 Prove that cos^(2)theta+cos^(4)theta=1

If sin theta+sin^(2)theta+sin^(3)theta=1, then prove that cos^(6)theta-4cos^(4)theta+8cos^(2)theta=4

Prove that : sin^(4)theta + cos^(4)theta = 1 - 2 cos^(2) theta + 2 cos^(4)theta

Given that sin theta+2cos theta=1 then prove that 2sin theta-cos theta=2

sin ^ (4) theta + 2sin ^ (2) theta (1- (1) / (cos ec ^ (2) theta)) + cos ^ (4) theta =

If sin^(2)theta-cos^(2)theta=(1)/(4) , then the value of (sin^(4)theta-cos^(4)theta) is :