Home
Class 12
MATHS
sin[pi/2-sin^(-1)(-(1)/(2))] is equal to...

`sin[pi/2-sin^(-1)(-(1)/(2))]` is equal to:

Promotional Banner

Similar Questions

Explore conceptually related problems

sin((pi)/(3)-sin^(-1)(-(1)/(2))) is equal to (A)

sin [(pi)/(3) - sin^(-1) (-(1)/(2))] is equal to :

sin(pi/6-sin^(-1)(-1/2))=?

The value of sin^(-1)((12)/(13)) - sin ^(-1)((3)/(5)) is equal to (A) pi-sin ^(-1) ((63)/(65)) (B) (pi)/(2) - sin ^(-1)((56)/(65)) (C) (pi)/(2) - cos ^(-1)((9)/(65)) (D) pi - cos ^(-1)((3)/(65))

sin[sin^(-1) (-(1)/(2))+ (pi)/(3)]=?

Number of solutions of the equation,sin^(-1)(1-x)-4sin^(-1)(x)=(pi)/(2), is equal to

The soluation set of inequality (sin x+cos^(-1)x)-(cos x-sin^(-1)x)>=(pi)/(2) is equal to

sin [(pi) / (3) -sin ^ (- 1) (- (1) / (2))]