Home
Class 9
MATHS
(2sqrt8)/(sqrt6-sqrt2)=...

`(2sqrt8)/(sqrt6-sqrt2)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

(3sqrt(2))/(sqrt(6)-sqrt(3))-(4sqrt(3))/(sqrt(6)-sqrt(2))-(6)/(sqrt(8)-sqrt(12))=? a.sqrt(3)-sqrt(2)b*sqrt(3)+sqrt(2)c.5sqrt(3)d.1

(6implify:)/(2sqrt(3)-sqrt(6))+(sqrt(6))/(sqrt(3)+sqrt(2))-(4sqrt(3))/(sqrt(6)-sqrt(2))

[(3sqrt2)/(sqrt3 + sqrt6) - (4sqrt3)/(sqrt6 + sqrt2) + (sqrt6)/(sqrt2 + sqrt3)] is simplified to

Simplify : (3sqrt(2))/(sqrt(6)-sqrt(3))-(4sqrt(3))/(sqrt(6)-sqrt(2))+(2sqrt(3))/(sqrt(6)+2)

(22)/(2sqrt(3)+1)+(17)/(2sqrt(3)-1)(2)(sqrt(2))/(sqrt(6)-sqrt(2))-(sqrt(3))/(sqrt(6)+sqrt(2))

Simplify the following term (2+sqrt(8))/(sqrt(2)+sqrt(6))

Show that: 1/((3-sqrt8))-1/((sqrt8-sqrt7))+1/((sqrt7-sqrt6))-1/((sqrt6-sqrt5))+1/((sqrt5-2))=5