Home
Class 12
MATHS
(1) Re((z1z2)/(barz1))...

(1) `Re((z_1z_2)/(barz_1))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let z_1=2-i ,z_2=-2+i . Find (i) Re ((z_1z_2)/( bar z_1)) (ii) Im (1/(z_1 bar z_1))

Let z_1=2-i ,""""z_2=-2+i . Find (i) Re ((z_1z_2)/( bar z_1)) (ii) Im (1/(z_1 bar z_1))

if z_(1) = 3-i and z_(2) = -3 +i, then find Re ((z_(1)z_(2))/(barz_(1)))

Let z_(1)=2 -I, z_(2)= -2 +i , find (i) Re ((z_(1)z_(2))/(bar(z)_(1))) , (ii) Im ((1)/(z_(1)bar(z)_(2)))

If z_(1)=2-i, z_(2)=1+ 2i, then find the value of the following : (i) Re((z_(1)*z_(2))/(bar(z)_(2))) (ii) Im (z_(1)*bar(z)_(2))

If z_1 and z_2 are 1-i and -2+4i respectively find Im ((z_1z_2)/barz_1)

If z_(1) = 1 +iand z_(2) = -3+2i then lm ((z_(1)z_(2))/barz_(1)) is

if z_(1)=1-i and z_(2) = -2 + 4i then find Im((z_(1)z_(2))/barz_(1))

Which of the following is (are) correct? (A) bar(z_1-z_2)-a(barz_1-barz_2)=0 (B) bar(z_1-z_2)+a(barz_1-barz_2)=0 (C) bar(z_1-z_2)+a(barz_1-barz_2)=-b (D) bar(z_1-z_2)+a(barz_1-barz_2)=-b

Find Re ((z_(1)z_(2))/(z_(1))), give z_(1)=2-i and z_(2)=-2+i