Home
Class 14
MATHS
log2[log3(log2 x)]=1...

`log_2``[log_3(log_2 x)]=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

If log_(5)[log_(3)(log_(2)x)]=1 , then x is:

If log_(5)[log_(3)(log_(2)x)]=1 then x is

If log_2 (log_3 (log_4 x))= 0, log_4 (log_3 (log_2 y))= 0 and log_3(log_4 (log_2z ))= 0, then the correct option is

If log_2(log_3(log_4(x)))=0, log_3(log_4(log_2(y)))=0 and log_4(log_2(log_3(z)))=0 then the sum of x,y,z is

The number of values of x if log_4(2log_3(1+log_2(1+3log_3x)))=1/2

If x=3, then log_(4)(2log_(3)(1+log_(2)(1+3log_(3)x))) is equal to

If log_(2)(log_(2)(log_(3)x))=log_(3)(log_(3)(log_(2)y))=0 , then x-y is equal to :

If log_(2)(log_(2)(log_(3)x))=log_(2)(log_(3)(log_(2)y))=0 then the value of (x+y) is

If log_(2)(log_(3)(log_(4)(x)))=0 and log_(3)(log_(4)(log_(2)(y)))=0 and log_(4)(log_(2)(log_(2)(z)))=0 then the sum of x,y and z is _(-)