Home
Class 9
MATHS
3/(sqrt3-sqrt2)=asqrt3-bsqrt2...

`3/(sqrt3-sqrt2)=asqrt3-bsqrt2`

Promotional Banner

Similar Questions

Explore conceptually related problems

(2sqrt3 + sqrt2)(2sqrt3-sqrt2)

If x=(sqrt3+sqrt2)/(sqrt3-sqrt2)andy=(sqrt3-sqrt2)/(sqrt3+sqrt2) then find the value of x^(2)+y^(2) ?

Find rational numbers a and b such that (i) (sqrt2-1)/(sqrt2+1)=a+bsqrt2 (ii) (2-sqrt5)/(2+sqrt5)=asqrt5+b (iii) (sqrt3+sqrt2)/(sqrt3-sqrt2)=a+bsqrt6 (iv) (5+2sqrt3)/(7+4sqrt3)=a+bsqrt3

[(sqrt3 + sqrt2 )/(sqrt3 - sqrt2) - (sqrt3 - sqrt2)/(sqrt3 + sqrt2)] simplifies to

If x= (sqrt3 - sqrt2)/(sqrt3+sqrt2) and y = (sqrt3+sqrt2)/(sqrt3-sqrt2) then x^2 +xy +y^2 is a multiple of

If a= (sqrt3 - sqrt2)/(sqrt3 + sqrt2), b = (sqrt3 + sqrt2)/(sqrt3 - sqrt2) then what is the value of a^2/b+b^2/a ?

The square root of ( (sqrt3 + sqrt2)/(sqrt3 - sqrt2)) is

Rationalise the denominator of the following (i) 2/(3sqrt3) , (ii) sqrt40/sqrt3 ,(iii) (3+sqrt2)/(4sqrt2) (iv) 16/(sqrt41-5) ,(v) (2+sqrt3)/(2-sqrt3) , (vi) sqrt6/(sqrt2+sqrt3) (vii) (sqrt3+sqrt2)/(sqrt3-sqrt2) ,(viii) (3sqrt5+sqrt3)/(sqrt5-sqrt3) , (ix) (4sqrt3+5sqrt2)/(sqrt48+sqrt18)

Find the value of a in the following: 6/(3sqrt2-2sqrt3)=3sqrt2-asqrt3