Home
Class 12
MATHS
If y= e^((log x+6)), find (dy)/(dx)...

If `y= e^((log x+6))`, find `(dy)/(dx)`

Text Solution

Verified by Experts

The correct Answer is:
`(dy)/(dx)=e^((log x +6)) (1)/(x)`
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

If y= tan^2 (log x^3 ), find dy/dx

If y = zx log x , then find (dy)/(dx)

Knowledge Check

  • If y=e^(log x) then (dy)/(dx)= ?

    A
    `(e^(log x))/(x)`
    B
    `(1)/(x)`
    C
    0
    D
    `(1)/(2)`
  • Similar Questions

    Explore conceptually related problems

    If y = x^(log x) , then (dy)/(dx) equals

    Solve: If y=[log (log(log x))]^(2) , find (dy)/(dx)

    If y = x^(2) + x^(log x) , then (dy)/(dx) is

    If y= log(5x^2 + 7x - 2) , find dy/dx

    If y=log_2 (log_2 x) , then (dy)/(dx) =

    If y=log(log(logx^3)) then (dy)/(dx)=

    If y=(xlogx)^(log(logx)) , then (dy)/(dx) is