Home
Class 12
MATHS
Solve: If y=[log (log(log x))]^(2), f...

Solve:
If `y=[log (log(log x))]^(2)`, find `(dy)/(dx)`

Text Solution

Verified by Experts

The correct Answer is:
`(2log[log(logx)])/(x.logx.log(logx))`
Promotional Banner

Similar Questions

Explore conceptually related problems

If y=(xlogx)^(log(logx)) , then (dy)/(dx) is

If y=log(log(logx^3)) then (dy)/(dx)=

If y=log_2 (log_2 x) , then (dy)/(dx) =

If y = log(sin x) , find (d^2y)/(dx^2)

If y=log((1-x^(2))/(1+x^(2)))," then "(dy)/(dx)=

If y=log (log x) then (d^2y)/(dx^2) is equal to

If y = zx log x , then find (dy)/(dx)