Home
Class 9
MATHS
(sqrt7-sqrt5)/(sqrt7+sqrt5)...

`(sqrt7-sqrt5)/(sqrt7+sqrt5)`

Promotional Banner

Similar Questions

Explore conceptually related problems

(sqrt7-sqrt6)/(sqrt7+sqrt6)-(sqrt7+sqrt6)/(sqrt7-sqrt6)=

show that (sqrt(7)-sqrt(5))/(sqrt(7)+sqrt(5))times(sqrt(7)-sqrt(5))/(sqrt(7)-sqrt(5)) =frac{(sqrt(7)-sqrt(5))^(2)}{2}

Simplify (sqrt(7)-sqrt(5))/(sqrt(7)+sqrt(5))+sqrt(35)

Simplify each of the following : (i)(sqrt(2)+1)/(sqrt(2)-1)+(sqrt(2)-1)/(sqrt(2)+1)" "(ii)(sqrt(5)+sqrt(3))/(sqrt(5)-sqrt(3))+(sqrt(5)-sqrt(3))/(sqrt(5)+sqrt(3))" "(iii)(2)/(sqrt(5)+sqrt(3))+(1)/(sqrt(3)+sqrt(2))-(3)/(sqrt(5)+sqrt(2))" "(iv)(sqrt(7)+sqrt(5))/(sqrt(7)-sqrt(5))-(sqrt(7)-sqrt(5))/(sqrt(7)+sqrt(5))

Show that: 1/((3-sqrt8))-1/((sqrt8-sqrt7))+1/((sqrt7-sqrt6))-1/((sqrt6-sqrt5))+1/((sqrt5-2))=5

(sqrt(7)+sqrt(5))/(sqrt(7)-sqrt(5) Is equal to

Evaluate (sqrt(7)-sqrt(5))/ (sqrt(7)-sqrt(5))

If sqrt(35)=5.9160, then the value of (sqrt(7)+sqrt(5))/(sqrt(7)-sqrt(5))