Home
Class 12
MATHS
Prove that : lim(x rarr0)((3^(x)+3^(-x)-...

Prove that : `lim_(x rarr0)((3^(x)+3^(-x)-2 ))/(x^(2))=(log_(e)3)^(2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0)(6^(x)-3^(x)-2^(x)+1)/(x^(2))

lim_(x rarr0)(3x^(3)+2x^(2)-x)/(x^(2)-x)

lim_(x rarr0)(2^(2x)-1)/(x)

lim_(x rarr0)(2^(x)-3^(x))/(x)

Evaluate: lim_(x rarr0)(e^(x)-e^(-x)-2x)/(x^(3))

lim_(x rarr0)((2^(x)-3^(x))x)/(1-cos3x)

lim_(x rarr0)(2x+3)=3

lim_(x rarr0)((e^(3x)-e^(2x))/(x))

"lim_(x rarr0)(3^(3x)-2^(2x))/(x)

lim_(x rarr0)(3^(5x)-e^(2x))/(sin3x)