Home
Class 12
MATHS
Domain of f(x)=x^(2)-1 is : (a)  R ...

Domain of `f(x)=x^(2)-1` is :
(a)  R   (b)  R-{1}   (c)  R-{-1}

Promotional Banner

Similar Questions

Explore conceptually related problems

The range of the function f(x)=(x^2-x)/(x^2+2x) is R (b) R-[1] (c) R={-1/2,1} (d) none of these

Let f(x)={(x^4-5x^2+4)/(|(x-1)(x-2)|)\ \ \ \ ,\ \ \ x!=1,\ 1 6\ \ \ \ \ \ \ \ \ \ \ \ \ ,\ \ \ x=1 ,\ \ \ \ \12 ,\ \ \ \ \ \ \ \ \ x=2 . Then, f(x) is continuous on the set R (b) R-{1} (c) R-{2} (d) R-{1,\ 2}

The domain of f(x)=((log)_(2)(x+3))/(x^(2)+3x+2) is R-{-1,2}(b)(-2,oo)R-{-1,-2,-3}(d)(-3,oo)-(-1,-2}

Consider the function y=f(x) satisfying the condition f(x+(1)/(x))=x^(2)+1/x^(2)(x!=0) Then the domain of f(x) is R domain of f(x) is R-(-2,2) range of f(x) is [-2,oo] range of f(x) is (2,oo)

The range of the function f(x)=x/(|x|) is R-{0} b. R-{-1,1} c. {-1,1} d. none of these

Consider the real-valued function satisfying 2f(sin x)+f(cos x)=x .then the (a)domain of f(x) is R (b)domain of f(x)is[-1,1] (c)range of f(x) is [-(2 pi)/(3),(pi)/(3)]( d)range of f(x) is R

Find the domain of f(x)=(1)/(x-|x|) , when x in R

Let f(x)=((2sinx+sin2x)/(2cosx+sin2x)*(1-cosx)/(1-sinx)): x in R. Consider the following statements. I. Domain of f is R. II. Range of f is R. III. Domain of f is R-(4n-1)pi/2, n in I. IV. Domain of f is R-(4n+1)pi/2, n in I. Which of the following is correct?

Check the following functions for one-one and onto (a) f:R rarr R, f(x)=(2x-3)/(7) (b) f:R rarr R, f(x)=|x+1| (c) f:R-{2} rarr R, f(x)=(3x-1)/(x-2) (d) f:R-{-1,1}, f(x)=sin^(2)x .

L e tf(x)={(x^4-5x^2+4)/(|(x-1)(x-2)6),x!=1,2 12,x=2x=1 then f(x) is continuous on the set R (b) R-[1] (c) R-[2] (d) R-[1,2]