Home
Class 10
MATHS
By taking A = 90^@ and B = 30^@ , show t...

By taking `A = 90^@ and B = 30^@` , show that sin (A - B) = sin A cos B-cos A sin B.

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • SAMPLE PAPER - 6

    EDUCART PUBLICATION|Exercise PART - A (SECTION - II)|4 Videos
  • SAMPLE PAPER - 6

    EDUCART PUBLICATION|Exercise PART - B (SECTION - III)|10 Videos
  • REAL NUMBERS

    EDUCART PUBLICATION|Exercise LONG QUESTION TYPE QUESTIONS|5 Videos
  • SAMPLE PAPER 12

    EDUCART PUBLICATION|Exercise PART - B (SECTION -V) |4 Videos

Similar Questions

Explore conceptually related problems

If A = 30^(@) and B = 60^(@) , verify that sin (A + B) = sin A cos B + cos A sin B.

If A = 30^(@) and B = 60^(@) , verify that cos (A + B) = cos A cos B - sin A sin B.

If A= 30^(@) and B=60^(@) verify that: sin (A+B)= sin A cos B +cosA sin B.

If = 60^(@) and B=30^(@) , then show that : sin A cos B+ cos A sin B= sin (A+B)

sin A-sin B and cos A + cos B

Prove that sin(A+B)sin(A-B)=cos^2B-cos^2A

If A+B+C=180^(@), show that sin2A-sin2B-sin2C=-4sin A cos B cos C

If sin A=sin B and cos A=cos B then A=

If sin A=sin B and cos A=cos B, then

If A=30o and B=60o ,verify that sin(A+B)=sin A cos B+cos A sin B(ii)cos(A+B)=cos A cos B-sin A sin B