Home
Class 10
MATHS
If 2cos3theta=sqrt(3)(0^(@)lethetale90^(...

If `2cos3theta=sqrt(3)(0^(@)lethetale90^(@))`,then find the value of `theta`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(2 \cos(3\theta) = \sqrt{3}\) for \(\theta\) where \(\theta\) lies between \(0^\circ\) and \(90^\circ\), we can follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ 2 \cos(3\theta) = \sqrt{3} \] ### Step 2: Divide both sides by 2 To isolate \(\cos(3\theta)\), we divide both sides by 2: \[ \cos(3\theta) = \frac{\sqrt{3}}{2} \] ### Step 3: Identify the angle for cosine We know that \(\cos(x) = \frac{\sqrt{3}}{2}\) corresponds to angles where: \[ x = 30^\circ + 360^\circ n \quad \text{or} \quad x = 330^\circ + 360^\circ n \quad (n \in \mathbb{Z}) \] However, since we are dealing with \(3\theta\), we can set: \[ 3\theta = 30^\circ \quad \text{or} \quad 3\theta = 330^\circ \] ### Step 4: Solve for \(\theta\) Now we solve for \(\theta\) in both cases. **Case 1:** \[ 3\theta = 30^\circ \] Dividing both sides by 3: \[ \theta = \frac{30^\circ}{3} = 10^\circ \] **Case 2:** \[ 3\theta = 330^\circ \] Dividing both sides by 3: \[ \theta = \frac{330^\circ}{3} = 110^\circ \] ### Step 5: Determine valid solutions Since \(\theta\) must lie between \(0^\circ\) and \(90^\circ\), we discard \(110^\circ\) as it is outside the specified range. ### Final Answer Thus, the only valid solution is: \[ \theta = 10^\circ \] ---
Promotional Banner

Topper's Solved these Questions

  • SAMPLE PAPER SOLVED 9

    EDUCART PUBLICATION|Exercise Part - A (Section -II) |15 Videos
  • SAMPLE PAPER SOLVED 9

    EDUCART PUBLICATION|Exercise Part - B (Section -III) |8 Videos
  • SAMPLE PAPER SOLVED 10

    EDUCART PUBLICATION|Exercise PART - B ( SECTION - V ) |5 Videos
  • SAMPLE PAPER SOLVED 4

    EDUCART PUBLICATION|Exercise SECTION - C|10 Videos

Similar Questions

Explore conceptually related problems

If tantheta=sinthetaand0^(@)lethetale90^(@) ,then find the value of theta .

If (cos^(2)theta)/(cot^(2)theta-cos^(2)theta)=3and0^(@)ltthetalt90^(@) , then find the value of theta .

lf 2 cos 3theta = sqrt3 and 0^@ lt theta lt 90^@ then the value of theta is

If 2cos theta - sin theta = 1/sqrt(2), (0^(@) lt theta lt 90^(@)) then the value of 2sin theta + cos theta is:

If sectheta+tantheta=sqrt(3)(o^(@)lethetale90^(@)) then tantheta is

If (tantheta+cottheta)/(tantheta-cottheta)=2,(0^(@)lethetale90^(@)) , then the value of sintheta is

If theta +costheta=1 and 0^(@)lethetale90^(@), " then the possible value of " theta are ___________.

If sqrt(3)sectheta- 2tantheta=0 and 0^(@) lt theta lt 90^(@) find the value of theta

If (cos^(2) theta)/(cot^(2) theta - cos^(2) theta) = 3 and 0^(@) lt theta lt 90^(@) , then the value of theta is

If 0^(@)anglethetaangle90^(@) , then find the value of theta from the equation (cos^(2)theta)/(cot^(2)theta-cos^(2)theta)=3 .