Home
Class 10
MATHS
If 1+sin^(2)beta =3sinbeta.cosbeta, then...

If `1+sin^(2)beta =3sinbeta.cosbeta`, then prove that `Tan alpha=1or tanalpha=(1)/(2)`.

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • SAMPLE PAPER 2019

    EDUCART PUBLICATION|Exercise Section - C|14 Videos
  • SAMPLE PAPER 2

    EDUCART PUBLICATION|Exercise SECTION - D |9 Videos
  • SAMPLE PAPER 3 [CBSE 2019 (TOPPER SOLVED)]

    EDUCART PUBLICATION|Exercise SECTION - D|12 Videos

Similar Questions

Explore conceptually related problems

If sin alpha sin beta-cos alpha cos beta+1=0, then prove that 1+cot alpha tan beta=0

If sinalpha+sinbeta=a and coslapha+cosbeta=b then prove that sin(alpha+beta)=(2ab)/(a^2+b^2)

If sin alpha sin beta-cos alpha cos beta+1=0 , then prove that 1+cotalpha tan beta=0 .

If sin alpha=sinbeta and cos alpha=cosbeta, then

If sin beta = 1/5 sin(2alpha +beta) , show that tan(alpha +beta) = 3/2 tan alpha .

If tan(alpha-beta)=(sin2 beta)/(3-cos2 beta), then ( i )tan(alpha)=2tan(beta)( ii) (1)/(2)tan(alpha)=tan(beta)( (ii) 2tan(alpha)=3tan(beta)( iv) 3tan(alpha)=2tan(beta)

If cosalpha+cosbeta=0=sinalpha+sinbeta , then prove that cos2alpha +cos2beta=-2cos(alpha +beta) .

if tan beta=(n sin alpha cos beta)/(1-n sin^(2)alpha) then prove that tan(alpha-beta)=(1-n)tan alpha

if tan beta=(n sin alpha cos beta)/(1-n sin^(2)alpha) then prove that tan(alpha-beta)=(1-n)tan alpha