Home
Class 10
MATHS
If the roots of the equation (a^(2) + b^...

If the roots of the equation `(a^(2) + b^(2))x^(2) - 2(ac + bd) x + (c^(2) + d^(2)) = 0` are equal prove that `(a)/(b) = (c )/(d)`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • QUADRATIC EQUATIONS

    EDUCART PUBLICATION|Exercise LONG ANSWER Type Questions [4 marks]|19 Videos
  • QUADRATIC EQUATIONS

    EDUCART PUBLICATION|Exercise SHORT ANSWER (SA-I) Type Questions [ 2 marks]|15 Videos
  • POLYNOMIALS

    EDUCART PUBLICATION|Exercise LONG ANSWER TYPE QUESTIONS|5 Videos
  • REAL NUMBERS

    EDUCART PUBLICATION|Exercise LONG QUESTION TYPE QUESTIONS|5 Videos

Similar Questions

Explore conceptually related problems

The roots of the equation (a^(2)+b^(2))x^(2)-2(bc+ad)x+(c^(2)+d^(2))=0 are equal if

If the equation (a^(2)+b^(2))x^(2)-2 (ac +bd)x+c^(2)+d^(2)=0 , has equal roots , then

If the roots of the equation (a^(2)+b^(2))x^(2)+2(bc+ad)x+(c^(2)+d^(2))=0 are real then a^(2),bd,c^(2) are in

If the roots of the equation (a^(2)+b^(2))x^(2)+2(bc+ad)x+(c^(2)+d^(2))=0 are real then a^(2),bd,c^(2) are in :

Show that if the roots of the equation (a^(2)+b^(2))x^(2)+2x(ac+bd)+c^(2)+d^(2)=0 are real,they will be equal

If the roots of the quadratic equation (a-b) x^(2) + (b - c) x + (c - a) =0 are equal , prove that b +c = 2a

If the equation (a^(2)+b^(2))x^(2)-2(ac+bd)x+c^(2)+d^(2)=0 has equal roots,then (a)ab=cd(b)ad=bc (c) ad=sqrt(bc)ab=sqrt(cd)

If the roots of the equation (a^(2)+b^(2))x^(2)-2(ac+bd)x+(c^(2)+d^(2))=0 are real where a,b,c,d in R ,then they are Rational Irrational Equal unequal

If the roots of the equation (c^(2)-ab)x^(2)-2(a^(2)-bc)x+b^(2)-ac=0 are equal,prove that either a=0 or a^(3)+b^(3)+c^(3)=3abc