Home
Class 10
MATHS
If tan A = 1, then 2 sin A cos A =...

If tan A = 1, then 2 sin A cos A = _______

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem "If tan A = 1, then 2 sin A cos A = _______", we can follow these steps: ### Step 1: Understand the value of tan A Given that \( \tan A = 1 \), we know that this occurs when \( A = 45^\circ \) (or \( \frac{\pi}{4} \) radians), since \( \tan 45^\circ = 1 \). **Hint:** Recall that \( \tan A = \frac{\text{opposite}}{\text{adjacent}} \) and find the angle where this ratio equals 1. ### Step 2: Use the double angle identity We need to find the value of \( 2 \sin A \cos A \). We can use the double angle identity for sine: \[ 2 \sin A \cos A = \sin(2A) \] **Hint:** Remember the double angle formula for sine: \( \sin(2A) = 2 \sin A \cos A \). ### Step 3: Calculate \( 2A \) Since \( A = 45^\circ \), we calculate: \[ 2A = 2 \times 45^\circ = 90^\circ \] **Hint:** Double the angle to find \( 2A \). ### Step 4: Find the sine of \( 90^\circ \) Now we find: \[ \sin(90^\circ) = 1 \] **Hint:** Recall the values of sine for standard angles, especially \( \sin 90^\circ \). ### Step 5: Conclusion Thus, we have: \[ 2 \sin A \cos A = \sin(2A) = \sin(90^\circ) = 1 \] **Final Answer:** \[ 2 \sin A \cos A = 1 \]
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO TRIGNOMETRY AND ITS APPLICATIONS

    EDUCART PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS ( VERY SHORT ANSWER TYPE QUESTIONS )|11 Videos
  • INTRODUCTION TO TRIGNOMETRY AND ITS APPLICATIONS

    EDUCART PUBLICATION|Exercise SHORT ANSWER (SA-I) TYPE QUESTIONS |15 Videos
  • INTRODUCTION TO TRIGNOMETRY AND ITS APPLICATIONS

    EDUCART PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS ( WRITE TRUE FALSE )|4 Videos
  • COORDINATE GEOMETRY

    EDUCART PUBLICATION|Exercise LONG ANSWER (LA) TYPE QUESTIONS (4 MARKS) |7 Videos
  • PAIR OF LINEAR EQUATIONS IN TWO VARIABLES

    EDUCART PUBLICATION|Exercise LONG ANSWER Type Questions [4 marks]|10 Videos

Similar Questions

Explore conceptually related problems

In a right triangle ABC, right angled at C, if tan A=1, then verify that 2sin A cos A=1

In a right triangle ABC right-angled at B.if tan A=1, then verify that 2sin A cos A=1

If in right angled triange ABC,angle B is right angle and tan A=1, then the value 2sin A cos A will be

If tan A=sqrt(2)-1 show that sin A cos A=(sqrt(2))/(4)

If tan theta=sqrt2-1 then sin theta cos theta=

IF 2 tan ^(-1) (cos x) =tan ^(-1) (2 "cosec"x) then sin x cos x=

Prove that :(1+cot A+tan A)(sin A cos A)=sin A tan A cot A cos A

If tan B=(n sin A*cos A)/(1-n sin^(2)A), then prove that tan(A-B)=(1-n)tan A

(tan A) / (1-cot A) + (cot A) / (1-tan A) = 1 + tan A + cot A = 1 + sec A cos ecA (1 + cos theta + sin theta) / (1 + cos theta-sin theta) = (1 + sin theta) / (cos theta)

Prove that (i) (sec 8A -1)/(sec 4A -1) =(tan 8A)/(tan 2A) (ii) (cos A+ sin A)/(cos A - sin A)-(cos A-sin A)/(cos A+sin A)=2 tan 2A