Home
Class 10
MATHS
In a Delta ABC , angleB is an acute-angl...

In a `Delta ABC , angleB` is an acute-angle and `AD bot BC`
Prove that :
(i) `AC^(2) = AB^(2) + BC^(2) - 2 BC xx BD`
(ii) `AB^(2) + CD^(2) = AC^(2) + BD^(2)`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

In a Delta ABC, /_ B is an acute-angle and AD bot BC . Prove that: AB^2 + CD^2 = AC^2 + BD^2

In fig. /_B of /_\ABC is an acute angle and AD _|_ BC ; prove that AC^2 = AB^2 + BC^2 - 2 BC xx BD

In figure,/_B<90^(@) and AD perp BC .Prove that AC^(2)=AB^(2)+BC^(2)-2BC.BD

In the figure , ABC is triangle in which angleABClt90^(@)andADbotBC . Prove that AC^(2)=AB^(2)+BC^(2)-2BC*BD .

(Result on acute triangle) In Fig.4.184,/_B of ABC is an acute angle and AD perp BC, prove that AC^(2)=AB^(2)+BC^(2)-2BC xx BD

In the given figure if AD bot BC prove that AB^(2)+CD^(2)= BD^(2) +AC^(2)

In a Delta ABC, AD is a median and AL bot BC . Prove that (a) AC^(2)=AD^(2)+BC*DL+((BC)/(2))^(2) (b) AB^(2)=AD^(2)-BC*DL+((BC)/(2))^(2) (c) AC^(2)+AB^(2)=2AD^(2)=2AD^(2)+(1)/(2)BC^(2)

In ABC,AD is perpendicular to BC. Prove that: AB^(2)+CD^(2)=AC^(2)+BD^(2)( ii) AB^(2)-BD^(2)=AC^(2)-CD^(2)