Home
Class 9
MATHS
In the figure, ABCDE is a pentagon. A li...

In the figure, ABCDE is a pentagon. A line through B parallel to AC meets DC produced at F. Show that
(i) `ar (DeltaACB) = ar (DeltaACF)`
(ii) `ar (AEDF) = ar (ABCDE) `

Promotional Banner

Similar Questions

Explore conceptually related problems

In the figure, ABCD is a quadrilateral. AC is the diagonal and DE || AC and also DE meets BC produced at E. Show that ar(ABCD) = ar (DeltaABE).

P is a point in the interior of a parallelogram ABCD. Show that ar (Delta APD) + ar ( DeltaPBC) = ar ( DeltaAPB) + ar (DeltaPCD)

In the figure, diagonals AC and BD of a trapezium ABCD with AB || DC intersect each other at O. Prove that ar(DeltaAOD) = ar(Delta BOC).

In a triangle ABC (see figure), E is the midpoint of median AD, show that (i) ar DeltaABE = ar DeltaACE (ii) ar DeltaABE=1/4ar(DeltaABC)

In the figure, ΔABC and ΔABD are two triangles on the same base AB. If line segment CD is bisected by bar(AB) at O, show that ar (DeltaABC) = ar (DeltaABD).

In the figure, XY is a line parallel to BC is drawn through A. If BE || CA and CF || BA are drawn to meet XY at E and F respectively. Show that ar(DeltaABE) = ar (DeltaACF).

ABCD is parallelogram and ABEF is a rectangle and DG is perpendicular on AB. Prove that (i) ar (ABCD) = ar(ABEF) (ii) ar (ABCD) = AB xx DG

P is a point in the interior of a parallelogram ABCD. Show that (i) ar (DeltaAPB) +ar (DeltaPCD)=1/2ar (ABCD) (ii) ar(DeltaAPD)+ar (DeltaPBC)=ar(DeltaAPB)+ar(DeltaPCD) (Hint : Throught , P draw a line parallel to AB)

In the figure, ΔABC, D, E, F are the midpoints of sides BC, CA and AB respectively. Show that (i) BDEF is a parallelogram (ii) ar(DeltaDEF)=1/4ar(DeltaABC) (iii) ar(BDEF)=1/2ar(DeltaABC)

In the figure D, E are points on the sides AB and AC respectively of DeltaABC such that ar(DeltaDBC) = ar(DeltaEBC) . Prove that DE || BC.