Home
Class 8
MATHS
(iv) prove this (x^(a^2)/x^(b^2))^(1/(a+...

(iv) prove this `(x^(a^2)/x^(b^2))^(1/(a+b))xx(x^(b^2)/x^(c^2))^(1/(b+c))xx(x^(c^2)/x^(a^2))^(1/(a+c)) = 1`

Promotional Banner

Similar Questions

Explore conceptually related problems

(x^(1/(a-b)))^(1/(a-c))xx(x^(1/(b-c)))^(1/(b-a))xx(x^(1/(c-a)))^(1/(c-b))

Prove that: ((x^a)/(x^(b)))^(a^(2+a b+b^2))\ xx\ ((x^b)/(x^(c)))^(b^(2+b c+c^2))\ xx\ ((x^c)/(x^(a)))^(c^(2+c a+a^2))=1

Prove that: ((x^a)/(x^b))^(a^(2+a b+b^(2)))xx\ ((x^b)/(x^c))^(b^(2+b c+c^2))\ xx\ ((x^c)/(x^a))^(c^(2+c a+a^2))

Simplify : ((x^(a))/(x^(-b)))^(a^(2)-ab+b^(2))xx((x^(b))/(x^(-c)))^(b^(2)-bc+c^(2))xx((x^(c))/(x^(-a)))^(c^(2)-ca+a^(2))

Prove that: ((x^a)/(x^b))^c\xx\ ((x^b)/(x^c))^a\ xx\ ((x^c)/(x^a))^b=1

Assuming that x is a positive real number and a ,\ b ,\ c are rational numbers, show that: ((x^a)/(x^b))^(a^2+a b+b^2)((x^b)/(x^c))^(b^2+b c+c^2)((x^c)/(x^a))^(c^2+c a+a^2)=1

Show that : (x^(a(b-c)))/(x^(b(a-c)))÷((x^b)/(x^a))^c=1 ((x^(a+b))^2(x^(b+c))^2 (x^(c+a))^2)/((x^a x^b x^c)^4)=1

Show that : (i) x^(a(b-c))/(x^(b(a-c)))/((x^b)/(x^a))^c=1 , (ii) ((x^(a+b))^2(x^(b+c))^2(x^(c+a))^2)/((x^a x^b x^c)^4)=1

Simplify: (i)\ ((x^(a+b))/(x^c))^(a-b)\ ((x^(b+c))/(x^a))^(b-c)\ ((x^(c+a))/(x^b))^(c-a) (ii)\ ((x^l)/(x^m))^(1/(lm))\ xx\ ((x^m)/(x^n))^(1/(mn))\ xx\ \ ((x^n)/(x^l))^(1/(ln))

Prove that: 1/(1+x^(b-a)+\ x^(c-a))+1/(1+x^(a-b)+\ x^(c-b))+1/(1+x^(b-c)+x^(a-c))=1