Home
Class 11
MATHS
Find value of a if lim(x rarr 1) (x^4-1...

Find value of `a` if `lim_(x rarr 1) (x^4-1)/(x-1)= lim_(x rarr a) (x^3-a^3)/(x^2-a^2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of k, if lim_(x rarr 1) (x^(4)-1)/(x-1) = lim_(x rarr k)(x^(3)-k^(3))/(x^(2)-k^(2))

Find all possible values of a, if : lim_(x rarr a) (x^3-a^3)/(x-a)= lim_(x rarr 1) (x^4-1)/(x-1) .

Evaluate lim_(x rarr1)(x^(3)-1)/(x-1)

lim_(x rarr 1)(x-1)/(sqrt(x+3)+2)=

If lim_(x rarr4)(f(x)-5)/(x-2)=1 then lim_(x rarr4)f(x)=

find the the value of lim_(x rarr 0) (e^(3x)-1)/(2x) and lim_(x rarr 0) log(1+4x)/(3x)

lim_(x rarr 1)[x^3-x^2+1] is :

Let lim_(x rarr1)(x^(4)-1)/(x-1)=lim_(k rarr k)(x^(3)-k^(3))/(x^(2)-k^(2)) then value of k is

Evaluate : lim_(x rarr 0)(3sin^-1 x)/(4(e^x-1))