Home
Class 12
MATHS
int sin2x.Log(tanx) dx with limits 0 to ...

`int` `sin2x.Log(tanx) dx` with limits `0` to `pi/2=`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_0^pi tanx/(sinx+tanx)dx

int_(0)^(pi//2) sin 2x log tan x dx is equal to

int_(0)^(pi) cos 2x . Log (sinx) dx

int_(0)^(pi/4) sin 2x dx

int_(0)^(pi/6) sin2x . cosx dx

int_0^a log (cota+ tanx)dx where a in (0,pi/2) is

int_(0)^(pi//2) sin 2x log cot x dx is equal to

8. int_0^(pi/4) log(1+tanx)dx

int_(0)^(pi//2) log | tan x | dx is equal to

int_0^(2pi) sin^2x dx