Home
Class 12
MATHS
Show that : Lim(x rarr0)(e^(x)-sin x-1)/...

Show that : `Lim_(x rarr0)(e^(x)-sin x-1)/(x)=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0)(e^(sin x)-1)/(x)

lim_(x rarr0)(e^(sin x)-1)/(x)

lim_(x rarr0)(e^(sin x)-sin x-1)/(x)

lim_(x rarr0)((e^(x)-x-1)/(x))

lim_(x rarr0)(e^(x)+sin x-1)/(log(1+x))=

lim_(x rarr0)(e^(x)+sin x-1)/(log(1+x))=

lim_(x rarr0)(e^(x)+sin x-1)/(log(1+x)=)

Lim_(x rarr0)(a^(sin x)-1)/(sin x)

lim_(x rarr0)(a^(sin x)-1)/(sin x)

lim_(x rarr0)(x-sin x)/(x^(3)) =