Home
Class 12
MATHS
lim(xrarr0)[1/x - log(1+x)/x^2] =...

`lim_(xrarr0)[1/x - log(1+x)/x^2] =`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(xrarr0)(x^3 log x)

lim_(xrarr0) (xcos x-log(1+x))/(x^2) equals

lim_(xrarr0)(2log(1+x)-log(1+2x))/(x^2) is equal to

Usinfg L' Hospital's rule, evaluate : lim_(xrarr0)(xe^(x)-"log"(1+x))/x^(2)

lim_( xrarr0) (1-cosx)/(x^(2))

lim_(xrarr0)((1-cos x)/x^2)

lim_(xrarr0)[(log(1+x) -x + x^2/2)/x^3]

Prove that lim_(xrarr0) ((1+x)^(n) - 1)/(x) = n .

Evaluate lim_(xrarr0)((1-cosx))/(x^(2))

lim_(xrarr0) (x^(2)-x)/(sinx)