Home
Class 9
MATHS
sqrt(27) + sqrt(243) =...

`sqrt(27) + sqrt(243)` =

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of (log sqrt(27) + log sqrt(8) - log sqrt(125))/(log 6 - log 5)

If x= (sqrt126 xx sqrt63 xx sqrt45)/(sqrt147 xx sqrt243) , then the value of x is

(6 + sqrt(27) ) - ( 3 + sqrt3) + (1-2sqrt3)

If x sqrt(243) = y sqrt(867) , where x and y are coprime numbers, then the value of (x-y) is

(5sqrt(2)xx7sqrt(7))/(3sqrt(27)xx sqrt(125))=

Do as directed: (i) Add : sqrt(125 + 2 sqrt(27) and - 5 sqrt(5) - sqrt(3) (ii) Add: sqrt(7) - sqrt(11) and sqrt(5) - sqrt(11) + sqrt(13) (iii) Multiply : 2 sqrt(2) by 5 sqrt(2) (iv) Multiply : (-3 + sqrt(5)) by 3 (v) Divide : 7 sqrt(5) by - 14 sqrt(125) Divide : 7 sqrt(5) by -14 sqrt(125) (vi) Divide : 2 sqrt(216) - 3 sqrt(27) by 3