Home
Class 12
MATHS
If x=t^(2),y=t^(3) find (dy)/(dx)...

If `x=t^(2),y=t^(3)` find `(dy)/(dx)`

Promotional Banner

Similar Questions

Explore conceptually related problems

1.If x=5t-t^(3) ,y=t^(2)+4t find (dy)/(dx) at t=1 .

If " "x=t^(2),y=t^(3) ," then "(dy)/(dx)" at "t=-1" is "

If x=t^(3) and y=t^(4) then (dy)/(dx) at "t=-1" is

If x=tan^(-1)t, and y=t^(3), find (dy)/(dx)

x=acos^(2)t,y=asin^(2)t find dy/dx

If x=a((1+t^(2))/(1-t^(2))) and y=(2t)/(1-t^(2)), find (dy)/(dx)

If x=a((1+t^(2))/(1-t^(2))) and y=(2t)/(1-t^(2)), find (dy)/(dx)

If sin x=(2t)/(1+t^(2)),tan y=(2t)/(1-t^(2)), find (dy)/(dx)

If x=(t+(1)/(t))^(a),y=a^(t+(1)/(t)), find (dy)/(dx)

If x=(1+log t)/(t^(2)),y=(3+2log t)/(t), find (dy)/(dx)