Home
Class 12
MATHS
lim(x→0) sinx/tanx...

`lim_(x→0) sinx/tanx`

Promotional Banner

Similar Questions

Explore conceptually related problems

If [.] denotes the greatest integer function then lim_(x→0) ​ [x^2/(tanx.sinx)] =

Prove that [lim_(xrarr0) (sinx.tanx)/(x^(2))]=1 ,where [.] represents greatest integer function.

The value of lim_(xto 0)[(sinx.tanx)/(x^(2))] is …….. (where [.] denotes greatest integer function).

lim_(x->oo)sinx/x =

lim_(x->oo)[sinx/x]

Statement 1: lim_(xto0)[(sinx)/x]=0 Statement 2: lim_(xto0)[(sinx)/x]=1

lim_(xrarr0) (sinx)/(x)= ?

Which of the following limits tends to unity? (a) ("lim")_(xvec0)sin(tanx)/(sinx) (b) ("lim")_(xvecpi/2)sin(cosx)/(cosx) (c) ("lim")_(xvec0)"sin"(e^x-1)/x (d) ("lim")_(xvec0)(sqrt(1+x)-sqrt(1-x))/x

Find the value of lim_(x->0)(1/sinx-1/x)

Find the value of lim_(x->0)(1/sinx-1/x)