Home
Class 10
MATHS
If g(x)=x+1 and p(x)=2x^3+x^2-2x+1 then ...

If `g(x)=x+1` and `p(x)=2x^3+x^2-2x+1` then `(p(x))/(g(x))=?`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=1+2x and g(x) = x/2 , then: (f@g)(x)-(g@f)(x)=

If f(x)=x^2 and g(x)=x^2+1 then: (f@g)(x)=(g@f)(x)=

If g(x)=x+2 and p(x)=x^(3)+3x^(2)+5x-1 , then divide p(x) by g(x) and find the quotient q(x) and remainder r(x).

If g(x)=x^2+2x+1 and g(f(x))=4(x^2+2x+1) then f(x) can be (A) 2x+1 (B) 2x-1 (C) 2x+3 (D) 2x-3

Divide p(x)=x^3+3x^2+3x+1 by g(x)=x+2

If f(x)=x^(5)+x^(2)+1 has roots x_(1),x_(2),x_(3),x_(4),x_(5) and g(x)=x^(2)-2 then g(x_(1))g(x_(2))g(x_(3))g(x_(4))g(x_(5))-30g(x_(1)x_(2)x_(3)x_(4)x_(5))=

divide p(x)=x^3+3x^2+3x+1 by g(x)= x+2

If f (x) =(x^(2) -1) " and " g (x) =(2x +3) " then " (g o f) (x) =?

If p(x)=x^(5)+4x^(4)-3x^(2)+1 " and" g(x)=x^(2)+2 , then divide p(x) by g(x) and find quotient q(x) and remainder r(x).

If f(x)=(1)/(x),g(x)=(1)/(x^(2)), and h(x)=x^(2), then f(g(x))=x^(2),x!=0,h(g(x))=(1)/(x^(2))h(g(x))=(1)/(x^(2)),x!=0, fog (x)=x^(2) fog(x) =x^(2),x!=0,h(g(x))=(g(x))^(2),x!=0 none of these