Home
Class 10
MATHS
If f(x)=(x-1)/(x+1), g(x)=1/x and h(x)=-...

If `f(x)=(x-1)/(x+1), g(x)=1/x` and `h(x)=-x`. Then the value of `g(h(f(0)))` is:

Promotional Banner

Similar Questions

Explore conceptually related problems

Given f(x)=(1)/(1-x),g(x)=f{f(x)} and h(x)=f{f{f(x)}} then the value of f(x)g(x)h(x) is

If f(x)=(1)/((1-x)),g(x)=f{f(x)}andh(x)=f[f{f(x)}] . Then the value of f(x).g(x).h(x) is

Given f(x) = (1)/((1-x)) , g(x) = f{f(x)} and h(x) = f{f{f(x)}}, then the value of f(x) g(x) h(x) is

Let f(x)=x, g(x)=1//x and h(x)=f(x) g(x). Then, h(x)=1, if

If f(x) = (1)/(1 -x) x ne 1 and g(x) = (x-1)/(x) , x ne0 , then the value of g[f(x)] is :

If f(x)=x^(2)g (x) and g(1)=6, g'(x) 3 , find the value of f' (1).

If f,\ g,\ h are real functions defined by f=sqrt(x+1),\ g(x)=1/x\ a n d\ h(x)=2x^2-3, then find the values of (2fg+g-h)(1)\ a n d\ (2f+g-h)(1)dot

If f(x)=(1)/(x),g(x)=(1)/(x^(2)), and h(x)=x^(2), then f(g(x))=x^(2),x!=0,h(g(x))=(1)/(x^(2))h(g(x))=(1)/(x^(2)),x!=0, fog (x)=x^(2) fog(x) =x^(2),x!=0,h(g(x))=(g(x))^(2),x!=0 none of these