Home
Class 12
MATHS
If y=1+xe^y show that dy/dx=e^y/(2-y)...

If` y=1+xe^y` show that `dy/dx=e^y/(2-y)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=e^(y/x) show that, dy/dx=((y^2)/(x(y-x)))

"If "y=e^(x+y)" ,show that "(dy)/(dx)=(y)/(1-y)

If e^x+e^y=e^(x+y) , show that (dy/dx)=e^(x-y)((e^y-1)/(1-e^x))

If y=1 +xe^(y) ,then (dy)/(dx) =

If x^(y)=e^(x-y), show that (dy)/(dx)=(y(x-y))/(x^(2))

if e^(x+y)=xy, show that (dy)/(dx)=(y(1-x))/(x(y-1))

If e^x+e^y = e^(x+y) , show that (dy)/(dx) = -e^(y-x)

If Y = kx, then show that (dy)/(dx) = (y)/(x)

If y=xe^(xy) , then (dy)/(dx) =

If e^(y)(x+1)=1, show that (dy)/(dx)=-e^(y)