Home
Class 12
MATHS
The value of int(-20pi)^(20 pi) |sin x| ...

The value of `int_(-20pi)^(20 pi) |sin x| [ sin x] dx` is (where [.] denotes greatest integer function)

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_0^(12pi) ([sint]+[-sint])dt is equal to (where [.] denotes the greatest integer function )

The value of int_(pi)^(2pi)[2sinx]dx is equal to (where [.] represents the greatest integer function)

The value of int_(0)^(infty)[tan^(-1)x] dx is equal to (where ,[.] denotes the greatest integer function)

int_(0)^(2pi)[|sin x|+|cos x|]dx , where [.] denotes the greatest integer function, is equal to :

The value of int_(-pi//2)^(pi//2)[ cot^(-1)x] dx (where ,[.] denotes greatest integer function) is equal to

If k in N and I_(k)=int_(-2kp)^(2kpi) |sin x|[sin x]dx , where [.] denotes the greatest integer function, then int_(k=1)^(100) I_(k) equal to

The value of I = int_(-1)^(1)[x sin(pix)]dx is (where [.] denotes the greatest integer function)

The value of the integral I=int_(0)^(pi)[|sinx|+|cosx|]dx, (where [.] denotes the greatest integer function) is equal to

The value of int_-1^10 sgn (x -[x])dx is equal to (where, [:] denotes the greatest integer function

The value of int_0^([x]) 2^x/(2^([x])) dx is equal to (where, [.] denotes the greatest integer function)