Home
Class 12
MATHS
If |[e^(x+1),1],[1,e^(2x+5)]|=0 then x i...

If `|[e^(x+1),1],[1,e^(2x+5)]|=0` then `x` is

Promotional Banner

Similar Questions

Explore conceptually related problems

int(e^(5x)-1)/(e^(2x))dx

If f(x)={{:((e^((2)/(x))-1)/(e^((2)/(x))+1),:,x ne 0),(0,:,x=0):} , then f(x) is

If f(x)={:{((e^(1/x)-1)/(e^(1/x)+1)", for " x !=0),(1", for " x=0):} , then f is

f(x)=(e^(2x)-1)/(e^(2x)+1) is

(e^(2x)+2e^(x)+1)/(e^(x))

If f(x) = {{:(x((e^(1//x) - e^(-1//x))/(e^(1//x)+e^(1//x)))",",x ne 0),(" "0",",x = 0):} , then at x = 0 f(x) is

The area bounded by y=|e^|x|-e^(-x)| , the x-axis and x=1 is (A) int_0^1 (e^x-e^(-x))dx (B) e+e^(-1)-2 (C) e+e^(-1)+2 (D) (sqrt(e)-1/sqrt(e))^2

If A=int_(0)^(1)(e^(x))/(x+1)dx then int_(0)^(1)(x^(2)e^(x))/(x+1)dx=