Home
Class 12
MATHS
The factor form 4(3a-2b)^(2)-5(3a-2b) is...

The factor form `4(3a-2b)^(2)-5(3a-2b)` is

A

`(3a-2b)[12a-8b-5]`

B

`(2a-3b)[12a-8b-5]`

C

`(3a-2b)[8a-12b-5]`

D

`(3a-2b)[5a-8b-12]`

Text Solution

AI Generated Solution

The correct Answer is:
To factor the expression \( 4(3a - 2b)^2 - 5(3a - 2b) \), we can follow these steps: ### Step 1: Identify the common factor The expression has a common factor of \( (3a - 2b) \). ### Step 2: Factor out the common term We can factor out \( (3a - 2b) \) from both terms: \[ 4(3a - 2b)^2 - 5(3a - 2b) = (3a - 2b) \left[ 4(3a - 2b) - 5 \right] \] ### Step 3: Simplify the expression inside the brackets Now, we simplify the expression inside the brackets: \[ 4(3a - 2b) - 5 \] Distributing \( 4 \): \[ = 12a - 8b - 5 \] ### Step 4: Write the final factored form Now we can write the expression in its factored form: \[ = (3a - 2b)(12a - 8b - 5) \] ### Final Answer: Thus, the factor form of the expression \( 4(3a - 2b)^2 - 5(3a - 2b) \) is: \[ (3a - 2b)(12a - 8b - 5) \] ---
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION OF POLYNOMIALS

    ARIHANT PUBLICATION BIHAR|Exercise Exam Booster (for Cracking Exam)|30 Videos
  • BIHAR POLYTECHNIC ENTRANCE EXAM (MODEL SOLVED PAPER 2018)

    ARIHANT PUBLICATION BIHAR|Exercise SECTION III MATHMEATICS |30 Videos
  • GEOMETRY

    ARIHANT PUBLICATION BIHAR|Exercise EXAM BOOSTER FOR CRACKING EXAM |20 Videos

Similar Questions

Explore conceptually related problems

factorize 3(a-2b)^(2)-5(a-2b)

factorize 2x^(2) - 5xy + 3y^(2) , and use your result to factorize 2(3a-b)^(2) - 5(3a-b)(2a-b) + 3(2a-b)^(2) . The factors are

Factorize: (a-2b)^(3)-512b^(3)

factorize : (3a+5b)^2-4c^2

One of the factors of a^(3) - b^(3) - a^(2)b + ab^(2) + a^(2) - b^(2) is

What will be factors of (a^(2)-b^(2))^(3) + (b^(2) -c^(2))^(3) + (c^(2) - a^(2))^(3)

The rationalising factor of root(5)(a^(2)b^(3)c^(4)) is

Factorize: 8a^(3)-b^(3)-4ax+2bx

factorize ( i ) 4(a+b)-6(a+b)^(2) (ii) 8(3a-2b)^(2)-10(3a-2b)