Home
Class 12
MATHS
The factor form z^(2)+(1)/(z^(2))+2-2z-(...

The factor form `z^(2)+(1)/(z^(2))+2-2z-(2)/(z)` is

A

`(z+(1)/(z)+2) (z-(1)/(z))`

B

`(z+(1)/(z))(z+(1)/(z)-2)`

C

`(z-(1)/(z)+2)(z+(1)/(z))`

D

`(z-(1)/(z))(z-(1)/(z)-2)`

Text Solution

AI Generated Solution

The correct Answer is:
To factor the expression \( z^2 + \frac{1}{z^2} + 2 - 2z - \frac{2}{z} \), we can follow these steps: ### Step 1: Rewrite the expression Start with the original expression: \[ z^2 + \frac{1}{z^2} + 2 - 2z - \frac{2}{z} \] ### Step 2: Recognize patterns Notice that \( z^2 + \frac{1}{z^2} + 2 \) can be rewritten using the identity: \[ a^2 + b^2 + 2ab = (a + b)^2 \] where \( a = z \) and \( b = \frac{1}{z} \). Thus, \[ z^2 + \frac{1}{z^2} + 2 = \left(z + \frac{1}{z}\right)^2 \] ### Step 3: Substitute back into the expression Substituting this back into the expression gives: \[ \left(z + \frac{1}{z}\right)^2 - 2z - \frac{2}{z} \] ### Step 4: Rewrite \( -2z - \frac{2}{z} \) Notice that \( -2z - \frac{2}{z} \) can also be expressed in terms of \( z + \frac{1}{z} \): \[ -2(z + \frac{1}{z}) \] ### Step 5: Combine the terms Now the expression can be rewritten as: \[ \left(z + \frac{1}{z}\right)^2 - 2\left(z + \frac{1}{z}\right) \] ### Step 6: Factor out the common term Let \( x = z + \frac{1}{z} \). Then, the expression simplifies to: \[ x^2 - 2x \] This can be factored as: \[ x(x - 2) \] ### Step 7: Substitute back for \( x \) Substituting back \( x = z + \frac{1}{z} \): \[ (z + \frac{1}{z})(z + \frac{1}{z} - 2) \] ### Final Result Thus, the factor form of the original expression is: \[ (z + \frac{1}{z})(z + \frac{1}{z} - 2) \]
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION OF POLYNOMIALS

    ARIHANT PUBLICATION BIHAR|Exercise Exam Booster (for Cracking Exam)|30 Videos
  • BIHAR POLYTECHNIC ENTRANCE EXAM (MODEL SOLVED PAPER 2018)

    ARIHANT PUBLICATION BIHAR|Exercise SECTION III MATHMEATICS |30 Videos
  • GEOMETRY

    ARIHANT PUBLICATION BIHAR|Exercise EXAM BOOSTER FOR CRACKING EXAM |20 Videos

Similar Questions

Explore conceptually related problems

Factorize z^(2)+z+(1)/(4)

If |z_(1)|=1,|z_(2)|=2, then value of |z_(1)+z_(2)|^(2)+|z_(1)-z^(2)|^(2) is equal to

If z^(2)+z+1=0 where z is a complex number, then the value of (z+(1)/(z))^(2)+(z^(2)+(1)/(z^(2)))^(2)+...+(z^(6)+(1)/(z^(6)))^(2) is

If z_(1) + z_(2) + z_(3) = 0 and |z_(1)| = |z_(2)| = |z_(3)| = 1 , then value of z_(1)^(2) + z_(2)^(2) + z_(3)^(2) equals

Prove that the complex numbers z_(1),z_(2) and the origin form an equilateral triangle only if z_(1)^(2) + z_(2)^(2) - z_(1)z_(2)=0 .

If z_(1)&z_(2) are two complex numbers & if arg (z_(1)+z_(2))/(z_(1)-z_(2))=(pi)/(2) but |z_(1)+z_(2)|!=|z_(1)-z_(2)| then the figure formed by the points represented by 0,z_(1),z_(2)&z_(1)+z_(2) is: