Home
Class 12
MATHS
If a+b+c=10 and ab + bc +ac=31 , then th...

If a+b+c=10 and ab + bc +ac=31 , then the value of `a^(2)+b^(2)+c^(2)` is

A

28

B

100

C

62

D

38

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( a^2 + b^2 + c^2 \) given that \( a + b + c = 10 \) and \( ab + ac + bc = 31 \), we can use the algebraic identity: \[ a^2 + b^2 + c^2 = (a + b + c)^2 - 2(ab + ac + bc) \] ### Step-by-step Solution: 1. **Identify the given values:** - \( a + b + c = 10 \) - \( ab + ac + bc = 31 \) 2. **Substitute the values into the identity:** \[ a^2 + b^2 + c^2 = (10)^2 - 2(31) \] 3. **Calculate \( (10)^2 \):** \[ (10)^2 = 100 \] 4. **Calculate \( 2(31) \):** \[ 2(31) = 62 \] 5. **Subtract \( 62 \) from \( 100 \):** \[ a^2 + b^2 + c^2 = 100 - 62 = 38 \] 6. **Final answer:** \[ a^2 + b^2 + c^2 = 38 \]
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION OF POLYNOMIALS

    ARIHANT PUBLICATION BIHAR|Exercise Exam Booster (for Cracking Exam)|30 Videos
  • BIHAR POLYTECHNIC ENTRANCE EXAM (MODEL SOLVED PAPER 2018)

    ARIHANT PUBLICATION BIHAR|Exercise SECTION III MATHMEATICS |30 Videos
  • GEOMETRY

    ARIHANT PUBLICATION BIHAR|Exercise EXAM BOOSTER FOR CRACKING EXAM |20 Videos

Similar Questions

Explore conceptually related problems

" If \begin{vmatrix} -a^2 & ab & ac\\ ab & -b^2 & bc\\ ac & bc & -c^2 \end{vmatrix}=1 then the value of a^(2)b^(2)c^(2) is

If a = 24, b = 26, c = 28 , then the value of a^2 + b^2 + c^2 - ab - bc - ac will be

If ab + bc + ca = 0, then what is the value of (a^(2))/(a^(2) - bc) + (b^(2))/(b^(2)-ca) + (c^(2))/(c^(2) - ab) ?

If a=24, b=26, c=28, then the value of a^2+b^2+c^2-ab-bc-ac will be :

if a, and c are all non zero and a+b+c=0 , then find the value of (a^(2))/(bc)+(b^(2))/(ac)+(c^(2))/(ab)

If a^(2)+b^(2)+c^(2)=16 and ab+bc+ca=10 find the value of a+b+c