Home
Class 12
MATHS
The factors of 8a^3+b^3-6a b+1 are (2a+...

The factors of `8a^3+b^3-6a b+1` are `(2a+b-1)(4a^2+b^2+1-3a b-2a)` `(2a-b+1)(4a^2+b^2-4a b+1-2a+b)` `(2a+b+1)(4a^2+b^2+1-2a b-b-2a)` `(2a-1+b)(4a^2+1-4a-b-2a b)`

A

`(2a+b+1)(4x^(2)+b^(2)+1-2ab-b-a)`

B

`(2a+b+1)(4a^(2)+a^(2)+1-2ab-b-2a)`

C

`(2a+b+1)(4a^(2)+b^(2)+1-2ab-b-2a)`

D

None of the above

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION OF POLYNOMIALS

    ARIHANT PUBLICATION BIHAR|Exercise Exam Booster (for Cracking Exam)|30 Videos
  • BIHAR POLYTECHNIC ENTRANCE EXAM (MODEL SOLVED PAPER 2018)

    ARIHANT PUBLICATION BIHAR|Exercise SECTION III MATHMEATICS |30 Videos
  • GEOMETRY

    ARIHANT PUBLICATION BIHAR|Exercise EXAM BOOSTER FOR CRACKING EXAM |20 Videos

Similar Questions

Explore conceptually related problems

The factors of 8a^(3)+b^(3)-6ab+1 are (a) (2a+b-1)(4a^(2)+b^(2)+1-3ab-2a) (b) (2a-b+1)(4a^(2)+b^(2)-4ab+1-2a+b)(2a+b+1)(4a^(2)+b^(2)+1-2ab-b-2a) (d) (2a-1+b)(4a^(2)+1-4a-b-2ab)

The factors 8(a-2b)^(2)-2a+4b-1= are

Simplify: a^(2)b(a-b^(2))+ab^(2)(4ab-2a^(2))-a^(3)b(1-2b)

|[a^(2), b^(2), c^(2)], [(a+1)^(2), (b+1)^(2), (c+1)^(2)], [(a-1)^(2), (b-1)^(2), (c-1)^(2)]| =-4(a-b)(b-c)(c-a)

Simplify.(4a-b)/(1-4ab)-(4a+b)/(1+4ab)-(4b(1-8a^(2)))/(16a^(2)b^(2)-1)