Home
Class 14
MATHS
What is the value of sqrt(361+sqrt(625)+...

What is the value of `sqrt(361+sqrt(625)+sqrt196)`

A

21

B

19

C

20

D

17

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sqrt{361 + \sqrt{625} + \sqrt{196}} \), we will follow these steps: ### Step 1: Calculate \( \sqrt{625} \) The square root of 625 is: \[ \sqrt{625} = 25 \] ### Step 2: Calculate \( \sqrt{196} \) The square root of 196 is: \[ \sqrt{196} = 14 \] ### Step 3: Substitute the values back into the expression Now we substitute the values we found back into the expression: \[ \sqrt{361 + \sqrt{625} + \sqrt{196}} = \sqrt{361 + 25 + 14} \] ### Step 4: Add the numbers inside the square root Now, we add the numbers inside the square root: \[ 361 + 25 + 14 = 400 \] ### Step 5: Calculate \( \sqrt{400} \) Finally, we calculate the square root of 400: \[ \sqrt{400} = 20 \] ### Final Answer Thus, the value of \( \sqrt{361 + \sqrt{625} + \sqrt{196}} \) is: \[ \boxed{20} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

What is the value of sqrt(150+sqrt(256)+sqrt(9))

What is the value of sqrt(7 + 4sqrt(3))?

What is the value of sqrt(613 + sqrt(144)) ?

What is the value of sqrt(7 + 4sqrt(3))?