Home
Class 12
MATHS
If C(r) stands for "^(n)C(r), then the ...

If `C_(r)` stands for `"^(n)C_(r),` then the
coefficient of `lambda^(n)mu^(n)` in the
expansion of
`[(1+ lambda)(1+mu)(lambda+mu)]^(n)` is :

A

`sum underset(r=0)overset(n)" C_(r)^(2)`

B

`sum underset(r=0)overset(n)" C_(r+2)^(2)`

C

`sum underset(r=0)overset(n)" C_(r+3)^(2)`

D

`sum underset(r=0)overset(n)" C_(r)^(3)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • NTA TPC JEE MAIN TEST 30

    NTA MOCK TESTS|Exercise MATHEMATICS (SUBJECTIVE NUMERICAL)|9 Videos
  • NTA TPC JEE MAIN TEST 124

    NTA MOCK TESTS|Exercise MATHEMATICS |30 Videos
  • NTA TPC JEE MAIN TEST 36

    NTA MOCK TESTS|Exercise MATHEMATICS |30 Videos

Similar Questions

Explore conceptually related problems

If ""(n)C_(0), ""(n)C_(1), ""(n)C_(2), ...., ""(n)C_(n), denote the binomial coefficients in the expansion of (1 + x)^(n) and p + q =1 sum_(r=0)^(n) r^(2 " "^n)C_(r) p^(r) q^(n-r) = .

If ""^(n)C_(0), ""^(n)C_(1),..., ""^(n)C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) and p + q = 1 , then sum_(r=0)^(n) ""r.^(n)C_(r) p^(r) q^(n-r) =

Find the cartesian form of the equation of the plane. vecr=(lambda-mu)hati+(1-mu)hatj+(2lambda+3mu)hatk

If C_(0), C_(1), C_(2),…, C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then sum_(r=0)^(n)sum_(s=0)^(n)(C_(r) +C_(s))

If C_(0), C_(1), C_(2), …, C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then sum_(r=0)^(n)sum_(s=0)^(n)C_(r)C_(s) =

If C_(0), C_(1), c_(2),...,C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then C_(0) + (C_(1))/(2) + C_(2)/(3) + ...+ (C_(n))/(n+1) or, sum_(r=0)^(n) (C_(r))/(r+ 1)

The cartesian eqaution of the plane r=(1+lambda-mu)hat(i)+(2-lambda)hat(j)+(3-2lambda+2mu)hat(k) , is

If C_(o)C_(1),C_(2),......,C_(n) denote the binomial coefficients in the expansion of (1+x)^(n), then the value of sum_(r=0)^(n)(r+1)C_(r) is