Home
Class 12
MATHS
sin^(-1)(sin((tan^(-1)1 +tan^(-1) 2 +tan...

`sin^(-1)(sin((tan^(-1)1 +tan^(-1) 2 +tan^(-1)3)/(cot^(-1)1+cot^(-1)2+cot^(-1)3)))=`

A

0

B

`pi-2`

C

`2-pi`

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem step by step, we will use the properties of inverse trigonometric functions and the formulas for the sum of inverse tangents and cotangents. ### Step 1: Understand the Expression We need to evaluate: \[ \sin^{-1}\left(\sin\left(\frac{\tan^{-1}(1) + \tan^{-1}(2) + \tan^{-1}(3)}{\cot^{-1}(1) + \cot^{-1}(2) + \cot^{-1}(3)}\right)\right) \] ### Step 2: Use the Formula for Sum of Inverse Tangents Recall the formula: \[ \tan^{-1}(x) + \tan^{-1}(y) = \tan^{-1}\left(\frac{x+y}{1-xy}\right) \text{ if } xy < 1 \] We will apply this formula to simplify \(\tan^{-1}(1) + \tan^{-1}(2)\). Let \(x = 1\) and \(y = 2\): \[ \tan^{-1}(1) + \tan^{-1}(2) = \tan^{-1}\left(\frac{1 + 2}{1 - 1 \cdot 2}\right) = \tan^{-1}\left(\frac{3}{-1}\right) = \tan^{-1}(-3) \] Now, we add \(\tan^{-1}(3)\): \[ \tan^{-1}(-3) + \tan^{-1}(3) = \tan^{-1}\left(\frac{-3 + 3}{1 - (-3)(3)}\right) = \tan^{-1}\left(\frac{0}{1 + 9}\right) = \tan^{-1}(0) \] ### Step 3: Evaluate the Denominator For the denominator, we have: \[ \cot^{-1}(x) = \frac{\pi}{2} - \tan^{-1}(x) \] Thus: \[ \cot^{-1}(1) + \cot^{-1}(2) + \cot^{-1}(3) = \left(\frac{\pi}{2} - \tan^{-1}(1)\right) + \left(\frac{\pi}{2} - \tan^{-1}(2)\right) + \left(\frac{\pi}{2} - \tan^{-1}(3)\right) \] This simplifies to: \[ \frac{3\pi}{2} - \left(\tan^{-1}(1) + \tan^{-1}(2) + \tan^{-1}(3)\right) \] Using the previous result: \[ \tan^{-1}(1) + \tan^{-1}(2) + \tan^{-1}(3) = \tan^{-1}(0) = 0 \] So: \[ \cot^{-1}(1) + \cot^{-1}(2) + \cot^{-1}(3) = \frac{3\pi}{2} \] ### Step 4: Substitute Back into the Expression Now we substitute back into the original expression: \[ \frac{\tan^{-1}(0)}{\frac{3\pi}{2}} = \frac{0}{\frac{3\pi}{2}} = 0 \] ### Step 5: Final Evaluation Now we evaluate: \[ \sin^{-1}(\sin(0)) = \sin^{-1}(0) = 0 \] ### Conclusion Thus, the final answer is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • NTA TPC JEE MAIN TEST 55

    NTA MOCK TESTS|Exercise MATHEMATICS (SUBJECTIVE NUMERICAL)|10 Videos
  • NTA TPC JEE MAIN TEST 54

    NTA MOCK TESTS|Exercise MATHEMATICS|29 Videos
  • NTA TPC JEE MAIN TEST 56

    NTA MOCK TESTS|Exercise MATHEMATICS |30 Videos

Similar Questions

Explore conceptually related problems

What is the value of tan(tan^(-1)x + tan^(-1)y + tan^(-1)z)-cot(cot^(-1)x + cot^(-1)y + cot^(-1)z) ?

tan(tan^(-1)x+tan^(-1)y+tan^(-1)z)-cot(cot^(-1)x+cot^(-1)y+cot^(-1)z) is equal to

tan^(-1)(cot x)-tan^(-1)(cot2x)=

sin cot ^ (- 1) cos tan ^ (- 1) 2

sin cot ^ (- 1) cos tan ^ (- 1) 2 =

The expression (1)/(sqrt(2)){(sin tan^(-1)cos tan^(-1)t)/(cos tan^(-1)sin cot^(-1)sqrt(2)t)}*{sqrt((1+2t^(2))/(2+t^(2)))}

tan ^ (- 1) 1 + cot ^ (- 1) 1 + sin ^ (- 1) (- 1)