Home
Class 12
MATHS
Let f: R to R be a differentiable functi...

Let `f: R to R` be a differentiable function given by `f(x) = x^(3) - 3x + 2020` If g(x) is a continuous function defined by
`g(x)={("Minimum"{f(t)","0 le t le x}",",0 le x le 1),("Mzximum"{f(t)","1 lt t le x}",",1lt x le 2):}`
and m and M be the least and the greatest value of g(x) on [0, 2] then which one of the following is correct?

A

`M-m=2`

B

`m=2020`

C

`M=2022`

D

`m=2019`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • NTA TPC JEE MAIN TEST 55

    NTA MOCK TESTS|Exercise MATHEMATICS (SUBJECTIVE NUMERICAL)|10 Videos
  • NTA TPC JEE MAIN TEST 54

    NTA MOCK TESTS|Exercise MATHEMATICS|29 Videos
  • NTA TPC JEE MAIN TEST 56

    NTA MOCK TESTS|Exercise MATHEMATICS |30 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=x^(3)-x^(2)+x+1 and g(x) be a function defined by g(x)={{:(,"Max"{f(t):0le t le x},0 le x le 1),(,3-x,1 le x le 2):} Then, g(x) is

Discuss the continuity of the function f, where f is defined by f(x){{:(3"," if 0 le x le 1),(4"," if 1lt x lt 3 ),(5"," if 3 le x le 10):}

Consider the function f:(0,2)rarr R defined by f(x)=(x)/(2)+(2)/(x) and the function g(x) defined by g(x)={(min f(t) , 0 lt t le x, 0 lt x le1), ((3)/(2)+x,1 lt x lt 2):} .Then

If a function f(x) is defined as f(x) = {{:(-x",",x lt 0),(x^(2)",",0 le x le 1),(x^(2)-x + 1",",x gt 1):} then

If f(x)={:{(3", if " 0 le x le 1),(4", if " 1 lt x lt 3),(5", if " 3 le x le 10):} , then

If f(x) is continuous in [-2, 2], where f(x)={:{ ((sin ax)/(x)-1", for "-2 le x lt 0),(2x+1", for " 0 le x le 1),(2bsqrt(x^(2)+3)-1", for " 1 lt x le 2):} , then a+b=

If f(x) ={(4-3x,",",0 lt x le 2),(2x-6,",",2 lt x le 3),(x+5,",",3 lt x le 6):} , then f(x) is

Let f(x) = x^(3) - x^(2) + x + 1 and g(x) = {{:(max f(t)",", 0 le t le x,"for",0 le x le 1),(3-x",",1 lt x le 2,,):} Then, g(x) in [0, 2] is

Let f (x)= [{:(x ^(2)+a,0 le x lt 1),( 2x+b,1le x le 2):}and g (x)=[{:(3x+b,0 le x lt 1),(x ^(3), 1 le x le 2):} If derivative of f(x) w.r.t. g (x ) at x =1 exists and is equal to lamda, then which of the followig is/are correct?