Home
Class 12
MATHS
Consider three vectors vecv(1)=vecv(2) ...

Consider three vectors `vecv_(1)=vecv_(2) -vecv_(3),vecv_(1), vecv_(2) and vecv_(3)` such that If `vecv_(1) = (veca xx hati) xx hati, vecv_(2)=(veca xx hatj) xx hatj and vecv_(3) = (veca xx hatk) xx hatk`, where `veca` is non -zero vector then :-

A

`veca *hatj =0`

B

`veca *hati =0`

C

`veca*hatk=0`

D

`vecv_(1) *vecv_(2)=(veca *hatj)^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem involving vectors \( \vec{v_1}, \vec{v_2}, \) and \( \vec{v_3} \), we will follow a systematic approach using vector algebra. ### Step 1: Define the vectors We are given: - \( \vec{v_1} = \vec{a} \times \hat{i} \times \hat{i} \) - \( \vec{v_2} = \vec{a} \times \hat{j} \times \hat{j} \) - \( \vec{v_3} = \vec{a} \times \hat{k} \times \hat{k} \) ### Step 2: Apply the vector triple product identity The vector triple product identity states that: \[ \vec{A} \times (\vec{B} \times \vec{C}) = (\vec{A} \cdot \vec{C}) \vec{B} - (\vec{A} \cdot \vec{B}) \vec{C} \] Using this identity, we can simplify \( \vec{v_1}, \vec{v_2}, \) and \( \vec{v_3} \). ### Step 3: Calculate \( \vec{v_1} \) Using the identity: \[ \vec{v_1} = \vec{a} \times \hat{i} \times \hat{i} = \vec{a} \cdot \hat{i} \hat{i} - \vec{a} \cdot \hat{i} \hat{i} = 0 \] This means \( \vec{v_1} \) is a zero vector. ### Step 4: Calculate \( \vec{v_2} \) Similarly, \[ \vec{v_2} = \vec{a} \times \hat{j} \times \hat{j} = \vec{a} \cdot \hat{j} \hat{j} - \vec{a} \cdot \hat{j} \hat{j} = 0 \] Thus, \( \vec{v_2} \) is also a zero vector. ### Step 5: Calculate \( \vec{v_3} \) Using the same logic, \[ \vec{v_3} = \vec{a} \times \hat{k} \times \hat{k} = \vec{a} \cdot \hat{k} \hat{k} - \vec{a} \cdot \hat{k} \hat{k} = 0 \] So, \( \vec{v_3} \) is also a zero vector. ### Step 6: Analyze the relationship We know from the problem statement that: \[ \vec{v_1} = \vec{v_2} - \vec{v_3} \] Since all three vectors are zero vectors, this equation holds true. ### Step 7: Determine the implications for vector \( \vec{a} \) Since \( \vec{v_1}, \vec{v_2}, \) and \( \vec{v_3} \) are all zero vectors, we can conclude that: - \( \vec{a} \cdot \hat{i} = 0 \) - \( \vec{a} \cdot \hat{j} = 0 \) - \( \vec{a} \cdot \hat{k} = 0 \) This implies that \( \vec{a} \) must be orthogonal to all unit vectors \( \hat{i}, \hat{j}, \hat{k} \), meaning \( \vec{a} \) is the zero vector. ### Step 8: Check the options Given the options, we need to check which one is correct. The first option states: \[ \vec{a} \cdot \hat{j} = 0 \] This is indeed true since \( \vec{a} \) is orthogonal to \( \hat{j} \). ### Conclusion The correct answer is that the first option is valid. ---
Promotional Banner

Topper's Solved these Questions

  • NTA TPC JEE MAIN TEST 55

    NTA MOCK TESTS|Exercise MATHEMATICS (SUBJECTIVE NUMERICAL)|10 Videos
  • NTA TPC JEE MAIN TEST 54

    NTA MOCK TESTS|Exercise MATHEMATICS|29 Videos
  • NTA TPC JEE MAIN TEST 56

    NTA MOCK TESTS|Exercise MATHEMATICS |30 Videos

Similar Questions

Explore conceptually related problems

For any vectors veca and vecb, (veca xx hati) + (vecb xx hati) + ( veca xx hatj) . (vecb xx hatj) + (veca xx hatk ) .(vecb xx hatk) is always equal to

If |vecV_(1)+vecV_(2)|=|vecV_(1)-vecV_(2)| and V_(2) is finite, then

Find vecB xx vecA if vecA = 3hati - 2hatj + 6hatk and vecB = hati - hatj + hatk .

Find 3-dimensional vectors vecv_(1),vecv_(2),vecc_(3) satisfying vecv_(1).vecv_(2)=4,vecv_(1).vecv_(2) =-2, vecv_(1).vecv_(3)=6 vecv_(2).vecv_(2)=2, vecv_(2).vecv_(3) = -5, vecv_(3).vecv_(3)=29

For any vector veca |veca xx hati|^(2) + |veca xx hatj|^(2) + |veca xx hatk|^(2) is equal to

Let veca vecb and vecc be non- zero vectors aned vecV_(1) =veca xx (vecb xx vecc) and vecV_(2) = (veca xx vecb) xx vecc .vectors vecV_(1) and vecV_(2) are equal . Then

If veca=2hati+hatj+2hatk then the value of |hati xx(veca xxhati)|^2+|hatj xx(veca xx hatj)|^2+|hatk xx(veca xx hatk)|^2 is

The velociies of A and B are vecv_(A)= 2hati + 4hatj and vecv_(B) = 3hati - 7hatj , velocity of B as observed by A is