To find the area bounded by the curves \( y = \tan^{-1} x \), \( y = \cot^{-1} x \), and the y-axis, we will follow these steps:
### Step 1: Find the intersection points of the curves
We need to find the point where \( y = \tan^{-1} x \) and \( y = \cot^{-1} x \) intersect. This occurs when:
\[
\tan^{-1} x = \cot^{-1} x
\]
Using the identity \( \cot^{-1} x = \frac{\pi}{2} - \tan^{-1} x \), we can set up the equation:
\[
\tan^{-1} x = \frac{\pi}{2} - \tan^{-1} x
\]
Adding \( \tan^{-1} x \) to both sides gives:
\[
2 \tan^{-1} x = \frac{\pi}{2}
\]
Dividing both sides by 2, we find:
\[
\tan^{-1} x = \frac{\pi}{4}
\]
Taking the tangent of both sides:
\[
x = 1
\]
Thus, the curves intersect at \( x = 1 \).
### Step 2: Set up the integral for the area
The area \( A \) between the curves from \( x = 0 \) to \( x = 1 \) can be expressed as:
\[
A = \int_{0}^{1} (\cot^{-1} x - \tan^{-1} x) \, dx
\]
### Step 3: Evaluate the integral
To evaluate the integral, we can use the fact that:
\[
\cot^{-1} x = \frac{\pi}{2} - \tan^{-1} x
\]
Thus, we can rewrite the integral:
\[
A = \int_{0}^{1} \left( \frac{\pi}{2} - \tan^{-1} x - \tan^{-1} x \right) \, dx = \int_{0}^{1} \left( \frac{\pi}{2} - 2\tan^{-1} x \right) \, dx
\]
This can be split into two separate integrals:
\[
A = \int_{0}^{1} \frac{\pi}{2} \, dx - 2 \int_{0}^{1} \tan^{-1} x \, dx
\]
Calculating the first integral:
\[
\int_{0}^{1} \frac{\pi}{2} \, dx = \frac{\pi}{2} \cdot 1 = \frac{\pi}{2}
\]
### Step 4: Evaluate the integral of \( \tan^{-1} x \)
The integral of \( \tan^{-1} x \) can be computed using integration by parts:
Let \( u = \tan^{-1} x \) and \( dv = dx \), then \( du = \frac{1}{1+x^2} \, dx \) and \( v = x \).
Using integration by parts:
\[
\int \tan^{-1} x \, dx = x \tan^{-1} x - \int \frac{x}{1+x^2} \, dx
\]
The second integral can be computed as:
\[
\int \frac{x}{1+x^2} \, dx = \frac{1}{2} \ln(1+x^2)
\]
Thus,
\[
\int \tan^{-1} x \, dx = x \tan^{-1} x - \frac{1}{2} \ln(1+x^2) + C
\]
Evaluating from 0 to 1:
\[
\left[ x \tan^{-1} x - \frac{1}{2} \ln(1+x^2) \right]_{0}^{1} = \left[ 1 \cdot \frac{\pi}{4} - \frac{1}{2} \ln(2) \right] - \left[ 0 - 0 \right] = \frac{\pi}{4} - \frac{1}{2} \ln(2)
\]
### Step 5: Combine results to find the area
Putting it all together:
\[
A = \frac{\pi}{2} - 2 \left( \frac{\pi}{4} - \frac{1}{2} \ln(2) \right) = \frac{\pi}{2} - \frac{\pi}{2} + \ln(2) = \ln(2)
\]
### Final Result:
Thus, the area bounded by the curves is:
\[
\boxed{\ln(2)}
\]