Home
Class 12
MATHS
lim(xto0)((1-cosx)(3+cos2x))/(x.tan2x)=...

`lim_(xto0)((1-cosx)(3+cos2x))/(x.tan2x)=`

A

0

B

1

C

`(1)/(2)`

D

`-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \frac{(1 - \cos x)(3 + \cos 2x)}{x \tan 2x} \), we can follow these steps: ### Step 1: Rewrite the expression using trigonometric identities We know that \( 1 - \cos x = 2 \sin^2\left(\frac{x}{2}\right) \) and \( \tan 2x = \frac{\sin 2x}{\cos 2x} \). Thus, we can rewrite the limit as: \[ \lim_{x \to 0} \frac{2 \sin^2\left(\frac{x}{2}\right)(3 + \cos 2x)}{x \cdot \frac{\sin 2x}{\cos 2x}} \] ### Step 2: Simplify the expression This can be simplified to: \[ \lim_{x \to 0} \frac{2 \sin^2\left(\frac{x}{2}\right)(3 + \cos 2x) \cos 2x}{x \sin 2x} \] ### Step 3: Rewrite \( \sin 2x \) Using the double angle formula, we have \( \sin 2x = 2 \sin x \cos x \). Therefore, we can rewrite the limit as: \[ \lim_{x \to 0} \frac{2 \sin^2\left(\frac{x}{2}\right)(3 + \cos 2x) \cos 2x}{2x \sin x \cos x} \] ### Step 4: Cancel out common terms We can cancel the factor of 2 in the numerator and denominator: \[ \lim_{x \to 0} \frac{\sin^2\left(\frac{x}{2}\right)(3 + \cos 2x) \cos 2x}{x \sin x \cos x} \] ### Step 5: Use the limit property \( \lim_{x \to 0} \frac{\sin x}{x} = 1 \) We can express \( \sin^2\left(\frac{x}{2}\right) \) as \( \left(\frac{\sin\left(\frac{x}{2}\right)}{\frac{x}{2}}\right)^2 \cdot \left(\frac{x}{2}\right)^2 \): \[ \lim_{x \to 0} \frac{\left(\frac{\sin\left(\frac{x}{2}\right)}{\frac{x}{2}}\right)^2 \cdot \left(\frac{x}{2}\right)^2 (3 + \cos 2x) \cos 2x}{x \sin x \cos x} \] ### Step 6: Substitute the limits As \( x \to 0 \), \( \frac{\sin\left(\frac{x}{2}\right)}{\frac{x}{2}} \to 1 \) and \( \cos 2x \to 1 \). Thus, we have: \[ \lim_{x \to 0} \frac{1^2 \cdot \left(\frac{x}{2}\right)^2 (3 + 1) \cdot 1}{x \cdot x} = \lim_{x \to 0} \frac{\frac{x^2}{4} \cdot 4}{x^2} = 1 \] ### Final Answer Therefore, the limit evaluates to: \[ \lim_{x \to 0} \frac{(1 - \cos x)(3 + \cos 2x)}{x \tan 2x} = 1 \]
Promotional Banner

Topper's Solved these Questions

  • NTA TPC JEE MAIN TEST 100

    NTA MOCK TESTS|Exercise MATHEMATICS (SUBJECTIVE NUMERICAL)|10 Videos
  • NTA JEE MOCK TEST 99

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA TPC JEE MAIN TEST 101

    NTA MOCK TESTS|Exercise MATHEMATICS|29 Videos

Similar Questions

Explore conceptually related problems

lim_(xto0)((1-cosx)(3+cosx))/(x tan 4x) is equal to

lim_(x to 0) ((1-cos 2x)(3+cosx))/(x tan 4x) is equal to

lim_(x rarr0)((1-cos2x)(3+cos x))/(x tan4x) =

Evaluate the following Limits lim_(xto0)(1-cosx*sqrt(cos2x))/(sin^(2)x)

The value of lim_(xto0) (1-(cosx)sqrt(cos2x))/(x^(2)) is

If lim_(xto0) (p sin2x+(1-cos2x))/(x+tanx)=1 , then the value of p is___________.

Evaluate lim_(xto0) (1-cos(1-cosx))/(x^(4)).

The value of lim_(xto0) ((1-cos2x)sin5x)/(x^(2)sin3x) is